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The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models ⇒ Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

I Speech Recognition

I Sequence Modeling (e.g. extensions to HMM/CRF)

I Parsing

I Machine Translation

y∗ = arg max
y

f (y) Decoding
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Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.



Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...



A Dual Decomposition Algorithm
for Non-Projective Dependency Parsing

Simple - Uses basic combinatorial algorithms

Efficient - Faster than previously proposed algorithms

Strong Guarantees - Gives a certificate of optimality when exact

Solves 98% of examples exactly, even though the problem is
NP-Hard

Widely Applicable - Similar techniques extend to other problems
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Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

I Starts at the root symbol *

I Each word has a exactly one parent word

I Produces a tree structure (no cycles)

I Dependencies can cross
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Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm
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Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard
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Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.
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Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.
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Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint
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Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))
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Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , j)− z(k)(i , j)



Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
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Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).
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Extensions

I Grandparent Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =...+ score(gp =∗0, head = saw2, prev =movie4,mod =today5)

I Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.
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Experiments
Properties:

I Exactness

I Parsing Speed

I Parsing Accuracy

I Comparison to Individual Decoding

I Comparison to LP/ILP

Training:
I Averaged Perceptron (more details in paper)

Experiments on:

I CoNLL Datasets

I English Penn Treebank

I Czech Dependency Treebank



How often do we exactly solve the problem?
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an exact solution.



Parsing Speed
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Grandparent model

I Number of sentences parsed per second

I Comparable to dynamic programming for projective parsing



Accuracy

Arc-Factored Prev Best Grandparent

Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes

I Approximate search (McDonald and Pereira, 2006)

I Loop belief propagation (Smith and Eisner, 2008)

I (Integer) Linear Programming (Martins et al., 2009)



Comparison to Subproblems
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Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

I LP (1)
I LP (2)
I ILP

Use an LP/ILP Solver for decoding

We compare:

I Accuracy
I Exactness
I Speed

Both LP and dual decomposition methods use the same model,
features, and weights w .



Comparison to LP/ILP: Accuracy
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I All decoding methods have comparable accuracy



Comparison to LP/ILP: Exactness and Speed
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Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (z(i , j)− y(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u
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A Subgradient Algorithm for Minimizing L(u)

L(u) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)

 + max
y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)


L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector gu such that for all v ,

L(v) ≥ L(u) + gu · (v − u)

Subgradient methods use updates u′ = u − αgu

In fact, for our L(u), gu(i , j) = z∗(i , j)− y∗(i , j)



Related Work

I Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

I Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

I Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

I Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)
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Other Applications

I Dual decomposition can be applied to other decoding
problems.

I Rush et al. (2010) focuses on integrated dynamic
programming algorithms.

I Integrated Parsing and Tagging

I Integrated Constituency and Dependency Parsing



Parsing and Tagging

y∗ = arg max
y

f (y) ⇐ Slow
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Dependency and Constituency

y∗ = arg max
y

f (y) ⇐ Slow
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Future Directions

There is much more to explore around dual decomposition in NLP.

I Known Techniques
I Generalization to more than two models
I K-best decoding
I Approximate subgradient
I Heuristic for branch-and-bound type search

I Possible NLP Applications
I Machine Translation
I Speech Recognition
I “Loopy” Sequence Models

I Open Questions
I Can we speed up subalgorithms when running repeatedly?
I What are the trade-offs of different decompositions?
I Are there better methods for optimizing the dual?



Appendix



Training the Model

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = ... + score(saw2,movie4, today5) + ...

I score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

I Weight vector w trained using Averaged perceptron.

I (More details in the paper.)
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