
Dual Decomposition for Parsing
with Non-Projective Head Automata

Terry Koo, Alexander M. Rush, Michael Collins,
David Sontag, and Tommi Jaakkola

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models ⇒ Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

I Speech Recognition

I Sequence Modeling (e.g. extensions to HMM/CRF)

I Parsing

I Machine Translation

y∗ = arg max
y

f (y) Decoding

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models ⇒ Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

I Speech Recognition

I Sequence Modeling (e.g. extensions to HMM/CRF)

I Parsing

I Machine Translation

y∗ = arg max
y

f (y) Decoding

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models ⇒ Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

I Speech Recognition

I Sequence Modeling (e.g. extensions to HMM/CRF)

I Parsing

I Machine Translation

y∗ = arg max
y

f (y) Decoding

Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.

Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...

A Dual Decomposition Algorithm
for Non-Projective Dependency Parsing

Simple - Uses basic combinatorial algorithms

Efficient - Faster than previously proposed algorithms

Strong Guarantees - Gives a certificate of optimality when exact

Solves 98% of examples exactly, even though the problem is
NP-Hard

Widely Applicable - Similar techniques extend to other problems

Roadmap

Algorithm

Experiments

Derivation

Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

I Starts at the root symbol *

I Each word has a exactly one parent word

I Produces a tree structure (no cycles)

I Dependencies can cross

Algorithm Outline

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model

Algorithm Outline

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2)

+score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4)

+score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1)

+score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Sibling Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1) +score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.

Dual Decomposition Idea

No
Constraints

Tree
Constraints

Arc-
Factored

Minimum
Spanning Tree

Sibling
Model

Individual
Decoding

Dual Decomposition Idea

No
Constraints

Tree
Constraints

Arc-
Factored

Minimum
Spanning Tree

Sibling
Model

Individual
Decoding

Dual
Decomposition

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid Trees

All Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling

Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)

Rewrite as argmax

z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible

Sibling Arc-Factored

Constraint

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , j)− z(k)(i , j)

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

z∗ = arg max
z∈Z

(f (z) +
∑
i ,j

u(i , j)z(i , j))

Minimum Spanning Tree

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

y∗ = arg max
y∈Y

(g(y)−
∑
i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j

Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Extensions

I Grandparent Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =...+ score(gp =∗0, head = saw2, prev =movie4,mod =today5)

I Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Roadmap

Algorithm

Experiments

Derivation

Experiments
Properties:

I Exactness

I Parsing Speed

I Parsing Accuracy

I Comparison to Individual Decoding

I Comparison to LP/ILP

Training:
I Averaged Perceptron (more details in paper)

Experiments on:

I CoNLL Datasets

I English Penn Treebank

I Czech Dependency Treebank

How often do we exactly solve the problem?

 90

 92

 94

 96

 98

 100

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

I Percentage of examples where the dual decomposition finds
an exact solution.

Parsing Speed

 0

 10

 20

 30

 40

 50

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

Sibling model

 0

 5

 10

 15

 20

 25

Cze
Eng

Dan
Dut

Por
Slo

Swe
Tur

Grandparent model

I Number of sentences parsed per second

I Comparable to dynamic programming for projective parsing

Accuracy

Arc-Factored Prev Best Grandparent

Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes

I Approximate search (McDonald and Pereira, 2006)

I Loop belief propagation (Smith and Eisner, 2008)

I (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

 88

 89

 90

 91

 92

 93

Eng

Individual
MST
Dual

F1 for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

I LP (1)
I LP (2)
I ILP

Use an LP/ILP Solver for decoding

We compare:

I Accuracy
I Exactness
I Speed

Both LP and dual decomposition methods use the same model,
features, and weights w .

Comparison to LP/ILP: Accuracy

 80

 85

 90

 95

 100
LP(1)
LP(2)

ILP
Dual

Dependency Accuracy

I All decoding methods have comparable accuracy

Comparison to LP/ILP: Exactness and Speed

 80

 85

 90

 95

 100
LP(1)
LP(2)

ILP
Dual

Percentage with exact solution

 0

 2

 4

 6

 8

 10

 12

 14
LP(1)
LP(2)

ILP
Dual

Sentences per second

Roadmap

Algorithm

Experiments

Derivation

Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (z(i , j)− y(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u

Deriving the Algorithm

Goal:
y∗ = arg max

y∈Y
f (y)

Rewrite:
arg max

z∈Z,y∈Y
f (z) + g(y)

s.t. z(i , j) = y(i , j) for all i , j

Lagrangian: L(u, y , z) = f (z) + g(y) +
∑
i,j

u(i , j) (z(i , j)− y(i , j))

The dual problem is to find min
u

L(u) where

L(u) = max
y∈Y,z∈Z

L(u, y , z) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)


+ max

y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)



Dual is an upper bound: L(u) ≥ f (z∗) + g(y∗) for any u

A Subgradient Algorithm for Minimizing L(u)

L(u) = max
z∈Z

f (z) +
∑
i,j

u(i , j)z(i , j)

 + max
y∈Y

g(y)−
∑
i,j

u(i , j)y(i , j)


L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector gu such that for all v ,

L(v) ≥ L(u) + gu · (v − u)

Subgradient methods use updates u′ = u − αgu

In fact, for our L(u), gu(i , j) = z∗(i , j)− y∗(i , j)

Related Work

I Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

I Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

I Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

I Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

Summary

y∗ = arg max
y

f (y) ⇐ NP-Hard

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model

Summary

y∗ = arg max
y

f (y) ⇐ NP-Hard

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Arc-Factored Model

Dual Decomposition

Sibling Model

Other Applications

I Dual decomposition can be applied to other decoding
problems.

I Rush et al. (2010) focuses on integrated dynamic
programming algorithms.

I Integrated Parsing and Tagging

I Integrated Constituency and Dependency Parsing

Parsing and Tagging

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S N V D N A D N V

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S

NP

N

John

VP

V

saw

NP

D

a

NP

N

movie

ADVP

ADV

today

ADVP

D

that

VP

N

he

V

liked

HMM Model

Dual Decomposition

CFG Model

Parsing and Tagging

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S N V D N A D N V

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S

NP

N

John

VP

V

saw

NP

D

a

NP

N

movie

ADVP

ADV

today

ADVP

D

that

VP

N

he

V

liked

HMM Model

Dual Decomposition

CFG Model

Dependency and Constituency

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S

NP

N

John

VP

V

saw

NP

D

a

NP

N

movie

ADVP

ADV

today

ADVP

D

that

VP

N

he

V

liked

Dependency Model

Dual Decomposition

Lexicalized CFG

Dependency and Constituency

y∗ = arg max
y

f (y) ⇐ Slow

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

+

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

S

NP

N

John

VP

V

saw

NP

D

a

NP

N

movie

ADVP

ADV

today

ADVP

D

that

VP

N

he

V

liked

Dependency Model

Dual Decomposition

Lexicalized CFG

Future Directions

There is much more to explore around dual decomposition in NLP.

I Known Techniques
I Generalization to more than two models
I K-best decoding
I Approximate subgradient
I Heuristic for branch-and-bound type search

I Possible NLP Applications
I Machine Translation
I Speech Recognition
I “Loopy” Sequence Models

I Open Questions
I Can we speed up subalgorithms when running repeatedly?
I What are the trade-offs of different decompositions?
I Are there better methods for optimizing the dual?

Appendix

Training the Model

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = ... + score(saw2,movie4, today5) + ...

I score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

I Weight vector w trained using Averaged perceptron.

I (More details in the paper.)

Early Stopping

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

% validation UAS
% certificates

% match K=5000

Early Stopping

Caching

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000

%
 o

f H
ea

d
A

ut
om

at
a

R
ec

om
pu

te
d

Iterations of Dual Decomposition

% recomputed, g+s
% recomputed, sib

Caching speed

