Dual Decomposition for Parsing
with Non-Projective Head Automata

Terry Koo, Alexander M. Rush, Michael Collins,
David Sontag, and Tommi Jaakkola

Non-Projective Dependency Parsing

*o John; sawp, a3 movies todays thatg he; likedg

|
N

*o Johny sawp, a3 movies todays thatg her likeds

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models = Harder decoding
Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

> Speech Recognition
» Sequence Modeling (e.g. extensions to HMM/CRF)
> Parsing

» Machine Translation

y* =argmaxf(y) Decoding
y

Dual Decomposition
A classical technique for constructing decoding algorithms.
Solve complicated models
y" = argmaxf(y)
by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.
» Dynamic programming
» Minimum spanning tree
» Shortest path
» Min-Cut

>

A Dual Decomposition Algorithm
for Non-Projective Dependency Parsing

Simple - Uses basic combinatorial algorithms
Efficient - Faster than previously proposed algorithms
Strong Guarantees - Gives a certificate of optimality when exact

Solves 98% of examples exactly, even though the problem is
NP-Hard

Widely Applicable - Similar techniques extend to other problems

Non-Projective Dependency Parsing

|

o John; sawp a3 movieg todays

thatg hes likedg

Nl SN

*o Johny sawp, a3 movies todays

» Starts at the root symbol *
» Each word has a exactly one parent word
» Produces a tree structure (no cycles)

» Dependencies can cross

thatg hes likedg

Roadmap

Algorithm
Experiments

Derivation

Algorithm Outline

*o John; sawp, a3 movies todays thatg he; likedg

TR A

*o John; sawp, a3 movies todays thatg he; likedg

+

*o John; sawp a3 movies todays thats he; likeds

o NN

*o John; sawp, a3 movies todays thatg he; likedg

Arc-Factored Model

Dual Decomposition

Sibling Model

Arc-Factored

N s TN

*o John; sawp, a3 movies todays thatg hey likedg

f(y) = score(head =, mod =saws) +score(sawsa, John;)
+score(saws, moviey) +score(saws, todays)

+score(moviey, ag) + ...

e.g. score(xg,sawy) = log p(sawa|*o) (generative model)

or score(xg,sawy) = w - ¢(saws, *o) (CRF/perceptron model)

y* = argmaxf(y) < Minimum Spanning Tree Algorithm
y

Thought Experiment: Individual Decoding

X N\
*o Johny saw, a3 movies todays thatg hey

+score(saws, movieq, todays)

“kedg

score(sawy, NULL, John;) 4 score(saws, NULL, movie,)

2/171
possibilities

score(sawy, NULL, John;) 4 score(saws, NULL, that)

score(sawg, NULL, ag) + score(saws, az, her)

Under Sibling Model, can solve for each word with Viterbi decoding.

Sibling Models

N A ST A

*s Johny sawp, a3 movies todays thatg hey likedg

f(y) = score(head = ¢, prev = NULL, mod = saws)
+score(sawg, NULL, Johny) +score(saws, NULL, moviey)

+score(sawg,moviey, todays) + ...

e.g. score(sawsy, movieq, todays) = log p(todays|saws, movies)

or score(sawsy, movieq, todays) = w - ¢(saws, movieq, todays)

y* = argmaxf(y) <« NP-Hard
y

Thought Experiment Continued

NN N

*o John; sawp, a3 movies todays thatg hey

Idea: Do individual decoding for each head word using dynamic
programming.

If we're lucky, we'll end up with a valid final tree.

But we might violate some constraints.

likeds

Dual Decomposition Idea

No Tree
Constraints Constraints
Arc- . Mln'lmu$
Factored panning free
- Individual Dual
Sibling Decodi D it
Model ecoding ecomposition

Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k=1to K
2(k) — Decode (f(z) + penalty) by Individual Decoding
y() — Decode (g(y) — penalty) by Minimum Spanning Tree
If y()(i,j) = zK)(i,) for all i,j Return (y() z(K)

Else Update penalty weights based on y(k)(i,j) — z(k)(i,j)

Dual Decomposition Structure

Goal y* = argmax f
y g max (v)

’ Sibling H Arc-Factored ‘

Rewrite as argmax f(z) + g(y)
ze Z, ye Y

[An Poss)i'ble‘ [Valid Trees |

such that z=y

Individual Decoding Penalties
u(i,j) =0 forall i,j
Iteration 1
m u(8,1) -1
N TN u(4,6) -1
*o John; sawp, a3 movies todays thats he; likeds
u(2,6) 1
. e 8,7) 1
z¥ = argmax(f(z) + u(i,j)z(i, u(
gmax(f(2) + Y u(i.j)z(7.J)
" [teration 2
Minimum Spanning Tree u(8,1) -1
u(4,6) -2
@ u(2,6) 2
A A T u(8,7) !
*o John; sawp, a3 movies todays thatg he; likedsg
o Converged
" = arg max — ul(r, I, %
y gyey(g()/) Z (i, 0)y(i,])) y* = argmax f(y) + g(y)
ij Y€y
Key
f(z) < Sibling Model g(y) < Arc-Factored Model
zZ < No Constraints Yy <« Tree Constraints

y(i,j)=1 if y contains dependency i,

Guarantees

Theorem
If at any iteration y(¥) = z(K)| then (y(k),z(k)) is the global
optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).

Roadmap

Algorithm
Experiments

Derivation

Extensions

» Grandparent Models

A~ O\

*o Johny sawo a3 movies todays thats hey likeds

f(y) =...+ score(gp =+, head = sawy, prev =movies, mod =todays)

» Head Automata (Eisner, 2000)
Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Experiments
Properties:

» Exactness

v

Parsing Speed

» Parsing Accuracy

» Comparison to Individual Decoding

» Comparison to LP/ILP
Training:

» Averaged Perceptron (more details in paper)
Experiments on:

» CoNLL Datasets

» English Penn Treebank

» Czech Dependency Treebank

How often do we exactly solve the problem?

> Percentage of examples where the dual decomposition finds
an exact solution.

Accuracy
Arc-Factored | Prev Best | Grandparent
Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes
» Approximate search (McDonald and Pereira, 2006)
» Loop belief propagation (Smith and Eisner, 2008)
» (Integer) Linear Programming (Martins et al., 2009)

50

40

30

20

Parsing Speed

% % % % % % % Q

% % % % % 9 %

Sibling model Grandparent model

» Number of sentences parsed per second

» Comparable to dynamic programming for projective parsing

Comparison to Subproblems

93
Individual —
MST
Dual m—
92
91
90 8
89 8
88

S
K2

F1 for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

Comparison to LP/ILP: Exactness and Speed

100

LP(1) o LP(1) oo
LP(2) mmmm 14 1 LP(2) oo
ILP ILP
> LP (1) Dual == 12 Dual m==m
95
» LP (2) 10
> ILP
8
Use an LP/ILP Solver for decoding 90 r
6
We compare:
» Accuracy 85 4
» Exactness 2
> Speed
80 0
Both LP and dual decomposition methods use the same model,
features. and weights w. Percentage with exact solution Sentences per second
Comparison to LP/ILP: Accuracy Roadmap

100

95

90

85 |-

80

Dependency Accuracy

> All decoding methods have comparable accuracy

Algorithm
Experiments

Derivation

Deriving the Algorithm

Goal: Rewrite:
y" = argmax (v) arg_ max (z) +&(y)

st. z(i,j) = y(i,j) for all i,j
Lagrangian: L(u,y,z) =f(z) +g(y) + Z u(i,j) (2(i,5) = y(i,J))

The dual problem is to find min L(u) where

Lu)= max Luy.z) = max (f(Z) + Z U(i,J)Z(i,j)>

ij

—+ Teal)f((g(}/) - Z u(’v./))/(lv./))

Dual is an upper bound: L(u) > f(z*) + g(y™) for any u

Related Work

Methods that use general purpose linear programming or
integer linear programming solvers (Martins et al. 2009;
Riedel and Clarke 2006; Roth and Yih 2005)

Dual decomposition/Lagrangian relaxation in combinatorial
optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970;
Fisher 1981)

Dual decomposition for inference in MRFs (Komodakis et al.,
2007; Wainwright et al., 2005)

Methods that incorporate combinatorial solvers within loopy
belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

A Subgradient Algorithm for Minimizing L(u)

L(u) = max (f(Z) +> U(ivj)Z(iyj)> + max (g(y) - U(i,j)y(i,j))

iJj ij

L(u) is convex, but not differentiable. A subgradient of L(u) at u
is a vector g, such that for all v,

L(v) = L(u) + gu- (v — u)

Subgradient methods use updates v’ = u — ag,

In fact, for our L(u), g,(i,j) =z (i,j) — y"(i.))

Summary

y* =argmaxf(y) < NP-Hard
y

*o John; sawp, a3 movies todays thatg he; likedg

Arc-Factored Model
Y

*o John; sawo a3 movies todays thats he; likeds

+ Dual Decomposition

*o John; sawp a3 movies todays thats he; likedg

Sibling Model

P NN

*o John; sawp, a3 movies todays thatg he; likedg

Other Applications

» Dual decomposition can be applied to other decoding

problems.

» Rush et al. (2010) focuses on integrated dynamic

programming algorithms.

> Integrated Parsing and Tagging

» Integrated Constituency and Dependency Parsing

Dependency and Constituency

y* = argmaxf(y) < Slow
y

*o John; saw, a3 movies todays thats he; likedg
l Dependency Model
TN m\« e
*o John; sawo a3 movies; todays thats he; likeds
—+ Dual Decomposition
*o John; sawp, a3 movies todays thats he; likeds
I R l Lexicalized CFG
NP VP
|
N \ NP ADVP ADVP
| | — |
John saw D NP ADV D VP
| | | | —
a N today that N \%
| | |
movie he liked

Parsing and Tagging

y* = argmaxf(y) < Slow
y

*, John; saw, a3 movies todays thatg he; likedg

l

S—+»N—>V—>D—+N—>»A—>»D—>N—V

A yov v v LA S

*o John; sawp a3 movies todays thats he; likeds

*, John; sawp, a3 movies todays thatg he; likeds

: l
P
NP VP
|
N \ NP ADVP ADVP
| | — |
John saw D NP ADV D VP
| | | | —
a N today that N \Y
|

HMM Model

Dual Decomposition

CFG Model

Future Directions
There is much more to explore around dual decomposition in NLP.

» Known Techniques

Generalization to more than two models
K-best decoding

Approximate subgradient

Heuristic for branch-and-bound type search

vV vyVvyy

» Possible NLP Applications
» Machine Translation
» Speech Recognition
» "“Loopy” Sequence Models

» Open Questions
» Can we speed up subalgorithms when running repeatedly?
» What are the trade-offs of different decompositions?
» Are there better methods for optimizing the dual?

Early Stopping

100 F T T S T
90 (77 JPtad 1
g, RS
g 80 [s |
5 H)
. <] N
Appendix e Or:y 1
Hy
60 =1 % validation UAS s
:,' % certificates = ==
: % match K=5000 «rrrre
50 LiL . . |
0 200 400 600 800 1000
Maximum Number of Dual Decomposition lterations
Early Stopping
Training the Model Caching
o 30 T T
% % recomputed, g+s
a % recomputed, sib m—
€ 25 9
. . 20 I
*s Johny sawp, a3 movies todays thatg hey likedg F
g 15
1]
: 2 10
f(y) = ... + score(sawy,moviey, todays) + ... 3
£
kS
ES

> score(sawg, movieq, todays) = w - ¢(sawz, moviey, todays)
» Weight vector w trained using Averaged perceptron.

> (More details in the paper.)

1000 2000 3000 4000
Iterations of Dual Decomposition

Caching speed

5000

