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Word-Sense Disambiguation, and Semi-Supervised Learning
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Overview

• A supervised method for word-sense disambiguation: decision
lists

• A semi-supervised method for word-sense disambiguation

• A semi-supervised method for named-entity classification
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Words in Context

Sense Examples (keyword in context)
1 . . . used to strain microscopic plant life from the . . .
1 . . . too rapid growth of aquatic plant life in water . . .
2 . . . automated manufacturing plant in Fremont . . .
2 . . . discovered at a St. Louis plant manufacturing . . .

• The task: given a word in context, decide on its word sense
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Examples

Examples of words used in [Yarowsky, 1995]:

Word Senses
plant living/factory
tank vehicle/container
poach steal/boil
palm tree/hand
axes grind/tools
sake benefit/drink
bass fish/music
space volume/outer
motion legal/phsyical
crane bird/machine
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Features Used in the Model

• Word found in +/ − k word window

• Word immediately to the right (+1 W)

• Word immediately to the left (-1 W)

• Pair of words at offsets -2 and -1

• Pair of words at offsets -1 and +1

• Pair of words at offsets +1 and +2
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Features Used in the Model

• Also maps words to parts of speech, and general classes (e.g.,
WEEKDAY, MONTH etc.)

• Local features including word classes are added:

– Pair of tags at offsets -2 and -1

– Tag at position -2, word at position -1

– etc.
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An Example

The ocean reflects the color of the sky, but even on cloudless days
the color of the ocean is not a consistent blue. Phytoplankton,
microscopic plant life that floats freely in the lighted surface waters,
may alter the color of the water. When a great number of organisms
are concentrated in an area, the plankton changes the color of the
ocean surface. This is called a ’bloom.’

⇓
w−1 = Phytoplankton t−1 = JJ
w+1 = life t+1 = NN
w−2, w−1 = (Phytoplankton,microscopic) t−2, t−1 = (NN,JJ)
w−1, w+1 = (microscopic,life) . . .

w+1, w+2 = (life,that)
word-within-k = ocean
word-within-k = reflects
word-within-k = color
. . .

word-within-k = bloom
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A Machine-Learning Method: Decision Lists

• For each feature, we can get an estimate of conditional
probability of sense 1 and sense 2

• For example, take the feature w+1 =life

• We might have

Count(sense 1 of plant, w+1 =life) = 100

Count(sense 2 of plant, w+1 =life) = 1

• Maximum-likelihood estimate

P (sense 1 of plant | w+1 =life) =
100

101
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Smoothed Estimates

• Usual problem: some counts are sparse

• We might have

Count(sense 1 of plant, w−1 =Phytoplankton) = 2

Count(sense 2 of plant, w−1 =Phytoplankton) = 0

• α smoothing (empirically, α ≈ 0.1 works well):

P (sense 1 of plant | w−1 =Phytoplankton) =
2 + α

2 + 2α

P (sense 1 of plant | w+1 =life) =
100 + α

101 + 2α

with α = 0.1, gives values of 0.95 and 0.99 (unsmoothed gives values of
1 and 0.99)
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Creating a Decision List

• For each feature, find

sense(feature) = argmaxsenseP (sense | feature)

e.g., sense(w+1 =life) = sense1

• Create a rule feature → sense(feature) with weight
P (sense(feature) | feature). e.g.,

Rule Weight
w+1 =life → sense 1 0.99
w−1 =Phytoplankton → sense 1 0.95
. . .
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Creating a Decision List

• Create a list of rules sorted by strength

Rule Weight
w+1 =life → sense 1 0.99
w−1 =manufacturing → sense 2 0.985
word-within-k=life → sense 1 0.98
word-within-k=manufacturing → sense 2 0.979
word-within-k=animal → sense 1 0.975
word-within-k=equipment → sense 2 0.97
word-within-k=employee → sense 2 0.968
w−1 =assembly → sense 2 0.965
. . .

• To apply the decision list: take the first (strongest) rule in the list which
applies to an example
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The ocean reflects the color of the sky, but even on cloudless days the color
of the ocean is not a consistent blue. Phytoplankton, microscopic plant life
that floats freely in the lighted surface waters, may alter the color of the
water. When a great number of organisms are concentrated in an area, the
plankton changes the color of the ocean surface. This is called a ’bloom.’

Feature Sense Strength
w−1 = Phytoplankton 1 0.95
w+1 = life 1 0.99
w−2, w−1 = (Phytoplankton,microscopic) N/A
w−1, w+1 = (microscopic,life) N/A
w+1, w+2 = (life,that) 1 0.96
word-within-k = ocean 1 0.93
word-within-k = reflects N/A
word-within-k = color 2 0.65
t−1 = JJ 2 0.56
t−2, t−1 = (NN,JJ) 2 0.7
t+1 = NN 1 0.64
. . .

• N/A ⇒ feature has not been seen in training data

• w+1 = life → Sense 1 is chosen
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Experiments

• [Yarowsky, 1994] applies the method to accent restoration in
French, Spanish

De-accented form Accented form Percentage
cesse cesse 53%

cessé 47%
coute coûte 53%

coûté 47%
cote côté 69%

côte 28%
cote 3%
coté < 1%

• Task is to recover accents on words

– Very easy to collect training/test data

– Very similar task to word-sense disambiguation

– Useful for restoring accents in de-accented text,
or in automatic generation of accents while typing

13

Overview

• A supervised method for word-sense disambiguation: decision
lists

• A semi-supervised method for word-sense disambiguation

• A semi-supervised method for named-entity classification
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A Partially Supervised Method

• Collecting labeled data can be expensive

• We’ll now describe an approach that uses a small amount of
labeled data, and a large amount of unlabeled data
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A Key Property: Redundancy

The ocean reflects the color of the sky, but even on cloudless days
the color of the ocean is not a consistent blue. Phytoplankton,
microscopic plant life that floats freely in the lighted surface waters,
may alter the color of the water. When a great number of organisms
are concentrated in an area, the plankton changes the color of the
ocean surface. This is called a ’bloom.’

⇓
w−1 = Phytoplankton word-within-k = ocean
w+1 = life word-within-k = reflects
w−2, w−1 = (Phytoplankton,microscopic) word-within-k = bloom
w−1, w+1 = (microscopic,life) word-within-k = color
w+1, w+2 = (life,that) . . .

There are often many features which indicate the sense of the word
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Another Useful Property: “One Sense per Discourse”

• Yarowsky observes that if the same word appears more than
once in a document, then it is very likely to have the same
sense every time
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Step 1 of the Method: Collecting Seed Examples

• Goal: start with a small subset of the training data being
labeled

• Various methods for achieving this:

– Label a number of training examples by hand

– Pick a single feature for each class by hand
e.g., word-within-k=bird and
word-within-k=machinery for crane

– Look through frequently occurring features, and label a few of them

– Using words in dictionary definitions
e.g., Pick words in the two definitions for “plant”

A vegetable organism, or part of one, ready for planting or
lately planted.

equipment, machinery, apparatus, for an industrial activity
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An example: for the “plant” sense distinction,
initial seeds are word-within-k=life and
word-within-k=manufacturing

Partitions the unlabeled data into three sets:

• 82 examples labelled with “life” sense

• 106 examples labelled with “manufacturing” sense

• 7350 unlabeled examples
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Training New Rules

1. From the seed data, learn a decision list of all rules with weight
above some threshold (e.g., all rules with weight > 0.97)

2. Using the new rules, relabel the data
(usually we will now end up with more data being labeled)

3. Induce a new set of rules with weight above the threshold from
the labeled data

4. If some examples are still not labeled, return to step 2
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Experiments

• Yarowsky describes several experiments:

– A baseline score for just picking the most frequent sense for each
word

– Score for a fully supervised method

– Partially supervised method with “two words” as a seed

– Partially supervised method with dictionary defn. as a seed

– Partially supervised method with hand-chosen rules as a seed

– Dictionary defn. method combined with one-sense-per-discourse
constraint

21
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Some Comments

• Very impressive results using relatively little supervision

• How well would this perform on words with “weaker” sense
distinctions? (e.g., interest)

• Can we give formal guarantees for when this method
will/won’t work?
(how to give a formal characterization of redundancy, and
show that this implies guarantees concerning the utility of
unlabeled data?)

• There are several “tweakable” parameters of the method
(e.g., the weight threshold used to filter the rules)

• Another issue: the method as described may not ever label all
examples
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Overview

• A supervised method for word-sense disambiguation: decision
lists

• A semi-supervised method for word-sense disambiguation

• A semi-supervised method for named-entity classification
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Supervised Learning

• We have domains X , Y

• We have labeled examples (xi, yi) for i = 1 . . . n

• Task is to learn a function F : X → Y
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Statistical Assumptions

• We have domains X , Y

• We have labeled examples (xi, yi) for i = 1 . . . n

• Task is to learn a function F : X → Y

• Typical assumption is that there is some distribution P (x, y)
from which examples are drawn

• Aim is to find a function F with a low value for

Er(F ) =
∑

x,y

P (x, y)[[F (x) 6= y]]

i.e., minimize probability of error on new examples
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Partially Supervised Learning

• We have domains X , Y

• We have labeled examples (xi, yi) for i = 1 . . . n
(n is typically small)

• We have unlabeled examples (xi) for i = (n + 1) . . . (n + m)

• Task is to learn a function F : X → Y

• New questions:

– Under what assumptions is unlabeled data “useful”?

– Can we find NLP problems where these assumptions hold?

– Which algorithms are suggested by the theory?
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Named Entity Classification

• Classify entities as organizations, people or locations

Steptoe & Johnson = Organization
Mrs. Frank = Person
Honduras = Location

• Need to learn (weighted) rules such as

contains(Mrs.) ⇒ Person
full-string=Honduras ⇒ Location
context=company ⇒ Organization

28



An Approach Using Minimal Supervision

• Assume a small set of “seed” rules

contains(Incorporated) ⇒ Organization
full-string=Microsoft ⇒ Organization
full-string=I.B.M. ⇒ Organization
contains(Mr.) ⇒ Person
full-string=New York ⇒ Location
full-string=California ⇒ Location
full-string=U.S. ⇒ Location

• Assume a large amount of unlabeled data

.., says Mr. Cooper, a vice president of ...

• Methods gain leverage from redundancy:

Either Spelling or Context alone is often sufficient to
determine an entity’s type
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Cotraining (Blum and Mitchell, 1998)

• We have domains X , Y

• We have labeled examples (xi, yi) for i = 1 . . . n

• We have unlabeled examples (xi) for i = (n + 1) . . . (n + m)

• We assume each example xi splits into two views, x1i and x2i

• e.g., if xi is a feature vector in R
2d, then x1i and x2i are

representations in R
d.
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The Data

• Approx 90,000 spelling/context pairs collected

• Two types of contexts identified by a parser

1. Appositives

.., says Mr. Cooper, a vice president of ...

2. Prepositional Phrases

Robert Haft , president of the Dart Group Corporation ...
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Features: Two Views of Each Example

.., says Mr. Cooper, a vice president of ...

⇓

Spelling Features Contextual Features

Full-String = Mr. Cooper appositive = president
Contains(Mr.)
Contains(Cooper)

32



Two Assumptions Behind Cotraining

Assumption 1: Either view is sufficient for learning

There are functions F 1 and F 2 such that

F (x) = F 1(x1) = F 2(x2) = y

for all (x, y) pairs
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Examples of Problems with Two Natural Views

• Named entity classification (spelling vs. context)

• Web page classification [Blum and Mitchell, 1998]
One view = words on the page, other view is pages linking to
a page

• Word sense disambiguation: a random split of the text?
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A Key Property: Redundancy

The ocean reflects the color of the sky, but even on cloudless days
the color of the ocean is not a consistent blue. Phytoplankton,
microscopic plant life that floats freely in the lighted surface waters,
may alter the color of the water. When a great number of organisms
are concentrated in an area, the plankton changes the color of the
ocean surface. This is called a ’bloom.’

⇓
w−1 = Phytoplankton word-within-k = ocean
w+1 = life word-within-k = reflects
w−2, w−1 = (Phytoplankton,microscopic) word-within-k = bloom
w−1, w+1 = (microscopic,life) word-within-k = color
w+1, w+2 = (life,that) . . .

There are often many features which indicate the sense of the word
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Two Assumptions Behind Cotraining

Assumption 2:
Some notion of independence between the two views

e.g., The Conditional-independence-given-label assumption:
If P (x1, x2, y) is the distribution over examples, then

P (x1, x2, y) = P0(y)P1(x1 | y)P2(x2 | y)

for some distributions P0, P1 and P2
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Why are these Assumptions Useful?

• Two examples/scenarios:

– Rote learning, and a graph interpretation

– Constraints on hypothesis spaces
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Rote Learning, and a Graph Interpretation

• In a rote learner, functions F 1 and F 2 are look-up tables

Spelling Category
Robert-Jordan PERSON
Washington LOCATION
Washington LOCATION
Jamie-Gorelick PERSON
Jerry-Jasinowski PERSON
PacifiCorp COMPANY
. . . . . .

Context Category
partner PERSON
partner-at COMPANY
law-in LOCATION
firm-in LOCATION
partner PERSON
partner-of COMPANY
. . . . . .

• Note: this can be a very inefficient learning method
(no chance to learn generalizations such as “any name containing Mr. is a
person”)
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Rote Learning, and a Graph Interpretation

• Each node in the graph is a spelling or context
A node for Robert Jordan, Washington, law-in, partner etc.

• Each (x1i, x2i) pair is an edge in the graph
e.g., (Robert Jordan, partner)

• An edge between two nodes mean they have the same label
(relies on assumption 1: each view is sufficient for
classification)

• As quantity of unlabeled data increases, graph becomes more
connected
(relies on assumption 2: some independence between the two
views)
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Constraints on Hypothesis Spaces

• n + m training examples xi = (x1i, x2i)

• First n examples have labels yi

• Learn functions F 1 and F 2 such that

F 1(x1i) = F 2(x2i) = yi i = 1 . . . n

F 1(x1i) = F 2(x2i) i = n + 1 . . . n + m

• The second set of constraints is new, and may significantly
restrict the set of possible functions F 1 and F 2. This may
significantly reduce the number of labeled examples, n, that
are required for accurate learning.
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A Linear Model

• How to build a classifier from spelling features alone?
A linear model:

– GEN(x1) is possible labels {person, location, organization}

– f(x1, y) is a set of features on spelling/label pairs, e.g.,

f100(x1, y) =

{

1 if x1 contains Mr., and y = person
0 otherwise

f101(x1, y) =

{

1 if x1 is IBM, and y = person
0 otherwise

– w is parameter vector, as usual choose

F 1(x1,w) = arg max
y∈GEN(x1)

f(x1, y) · w

– ⇒ each parameter in w gives a weight for a feature/label pair.
e.g., w100 = 2.5, w101 = −1.3
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A Boosting Approach to Supervised Learning

• Greedily minimize

L(w) =
∑

i

∑

y 6=yi

e−m(yi,y,w)

where

m(yi, y,w) = f(xi, yi) · w − f(xi, y) · w

• L(w) is an upper bound on the number of ranking errors,

L(w) ≥
∑

i

∑

y 6=yi

[[m(yi, y,w) ≤ 0]]

(Note: we define [[π]] to be 1 if the statement π is true, 0
otherwise)
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An Extension to the Cotraining Scenario

• Now build two linear models in parallel

– GEN(x1) = GEN(x2) is set of possible labels
{person, location, organization}

– f
1(x1, y) is a set of features on spelling/label pairs

– f
2(x2, y) is a set of features on context/label pairs, e.g.,

f2
100(x2, y) =

{

1 if x2 is president and y = person
0 otherwise

– w
1 and w

2 are the two parameter vectors

F 1(x1,w
1) = arg max

y∈GEN(x1)
f
1(x1, y) · w1

F 2(x2,w
2) = arg max

y∈GEN(x2)
f
2(x2, y) · w2
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An Extension to the Cotraining Scenario

• n + m training examples xi = (x1i, x2i)

• First n examples have labels yi

• Linear models define F1 and F 2 as

F 1(x1,w
1) = arg max

y∈GEN(x1)
f
1(x1, y) · w1

F 2(x2,w
2) = arg max

y∈GEN(x2)
f
2(x2, y) · w2

• Three types of errors:

E1 =
n

∑

i=1

[[F 1(x1i,w
1) 6= yi]]

E2 =
n

∑

i=1

[[F 2(x2i,w
2) 6= yi]]

E3 =

m+1
∑

i=n+1

[[F 1(x1i,w
1) 6= F 2(x2i,w

2)]]
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Objective Functions for Cotraining

• Define “pseudo labels”

z1i(w
1) = F 1(x1i,w

1) i = (n + 1) . . . (n + m)

z2i(w
2) = F 2(x2i,w

2) i = (n + 1) . . . (n + m)

e.g., z1i is output of first classifier on the i’th example

L(w1,w2) = +
n

∑

i=1

∑

y 6=yi

ef
1(x1i,y)·w1−f

1(x1i,yi)·w
1

+
n

∑

i=1

∑

y 6=yi

ef
2(x2i,y)·w2−f

2(x2i,yi)·w
2

+
n+m
∑

i=n+1

∑

y 6=z2i

ef
1(x1i,y)·w1−f

1(x1i,z2i)·w
1

+
n+m
∑

i=n+1

∑

y 6=z1i

ef
2(x2i,y)·w2−f

2(x2i,z2i)·w
2
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More Intuition

• Need to minimize L(w1,w2), do this by greedily minimizing
w.r.t. first w1, then w

2

• Algorithm boils down to:

1. Start with labeled data alone

2. Induce a contextual feature for each class
(person/location/organization)
from the current set of labelled data

3. Label unlabeled examples using contextual rules

4. Induce a spelling feature for each class
(person/location/organization)
from the current set of labelled data

5. Label unlabeled examples using spelling rules

6. Return to step 2
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Optimization Method

1. Set pseudo labels z2i

2. Update w
1 to minimize

n
∑

i=1

∑

y 6=yi

ef
1(x1i,y)·w1−f

1(x1i,yi)·w
1

+
n+m
∑

i=n+1

∑

y 6=z2i

ef
1(x1i,y)·w1−f

1(x1i,z2i)·w
1

(for each class choose a spelling feature, weight)
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3. Set pseudo labels z1i

4. Update w
2 to minimize

n
∑

i=1

∑

y 6=yi

ef
2(x2i,y)·w2−f

2(x2i,yi)·w
2

+
n+m
∑

i=n+1

∑

y 6=z1i

ef
2(x2i,y)·w2−f

2(x2i,z2i)·w
2

(for each class choose a contextual feature, weight)

5. Return to step 1
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An Example Trace
1. Use seeds to label 8593 examples

(4160 companies, 2788 people, 1645 locations)

2. Pick a contextual feature for each class:
COMPANY: preposition=unit of 2.386 274/2
PERSON: appositive=president 1.593 120/6
LOCATION: preposition=Company of 1.673 46/1

3. Set pseudo labels using seeds + contextual features
(5319 companies, 6811 people, 1961 locations)

4. Pick a spelling feature for each class
COMPANY: Contains(Corporation) 2.475 495/10
PERSON: Contains(.) 2.482 4229/106
LOCATION: fullstring=America 2.311 91/0

5. Set pseudo labels using seeds + spelling features
(7180 companies, 8161 people, 1911 locations)

6. Continue ...
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Evaluation

• 88,962 (spelling, context) pairs extracted as training data

• 7 seed rules used

contains(Incorporated) ⇒ Organization
full-string=Microsoft ⇒ Organization
full-string=I.B.M. ⇒ Organization
contains(Mr.) ⇒ Person
full-string=New York ⇒ Location
full-string=California ⇒ Location
full-string=U.S. ⇒ Location

• 1,000 examples picked at random, and labelled by hand to give
a test set.
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• Around 9% of examples were “noise”, not falling into any of
the three categories

• Two measures given: one excluding all noise items, the other
counting noise items as errors
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Other Methods

• EM approach

• Decision list (Yarowsky 95)

• Decision list 2 (modification of Yarowsky 95)

• DL-Cotrain:
decision list alternating between two feature types
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Results

Learning Algorithm Accuracy Accuracy
(Clean) (Noise)

Baseline 45.8% 41.8%
EM 83.1% 75.8%
Decision List 81.3% 74.1%
Decision List 2 91.2% 83.2%
DL-CoTrain 91.3% 83.3%
CoBoost 91.1% 83.1%
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Learning Curves for Coboosting
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Summary

• Appears to be a complex task: many features/rules required

• With unlabeled data, supervision is reduced to 7 “seed” rules

• Key is redundancy in the data

• Cotraining suggests training two classifiers that “agree” as
much as possible on unlabeled examples

• CoBoost algorithm builds two additive models in parallel,
with an objective function that bounds the rate of agreement
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