
6.864 (Fall 2007): Lecture 7
Tagging

1

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

• Log-linear taggers

• Log-linear models for parsing and other problems

2

Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

3

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts
on [Location Wall Street], as their CEO [Person Alan Mulally] announced first
quarter results.

4

Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

5

Our Goal

Training set:
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT
board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT
Dutch/NNP publishing/VBG group/NN ./.
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN
Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT
nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.
. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN
Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP
victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP
instead/RB ./.

• From the training set, induce a function/algorithm that maps
new sentences to their tag sequences.

6

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP
Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB
how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB
capital/NN ./.

• “Local”: e.g., can is more likely to be a modal verb MD rather
than a noun NN

• “Contextual”: e.g., a noun is much more likely than a verb to
follow a determiner

• Sometimes these preferences are in conflict:

The trash can is in the garage

7

A Naive Approach

• Use a machine learning method to build a “classifier” that
maps each word individually to its tag

• A problem: does not take contextual constraints into account

8

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

– Basic definitions

– Parameter estimation

– The Viterbi Algorithm

• Log-linear taggers

• Log-linear models for parsing and other problems

9

Hidden Markov Models

• We have an input sentence S = w1, w2, . . . , wn

(wi is the i’th word in the sentence)

• We have a tag sequence T = t1, t2, . . . , tn
(ti is the i’th tag in the sentence)

• We’ll use an HMM to define

P (t1, t2, . . . , tn, w1, w2, . . . , wn)

for any sentence S and tag sequence T of the same length.

• Then the most likely tag sequence for S is

T ∗ = argmaxT P (T, S)

10

How to model P (T, S)?

A Trigram HMM Tagger:

P (T, S) = P (END | w1 . . . wn, t1 . . . tn)×
∏n

j=1 [P (tj | w1 . . . wj−1, t1 . . . tj−1)×
P (wj | w1 . . . wj−1, t1 . . . tj)] Chain rule

= P (END|tn−1, tn)×
∏n

j=1 [P (tj | tj−2, tj−1) × P (wj | tj)] Independence assumptions

• END is a special tag that terminates the sequence

• We take t0 = t−1 = *, where * is a special “padding” symbol

11

Independence Assumptions in the Trigram HMM Tagger

• 1st independence assumption: each tag only depends on
previous two tags

P (tj|w1 . . . wj−1, t1 . . . tj−1) = P (tj|tj−2, tj−1)

• 2nd independence assumption: each word only depends on
underlying tag

P (wj|w1 . . . wj−1, t1 . . . tj) = P (wj|tj)

12

An Example

• S = the boy laughed

• T = DT NN VBD

P (T, S) = P (DT|START, START)×
P (NN|START, DT)×
P (VBD|DT, NN)×
P (END|NN, VBD)×
P (the|DT)×
P (boy|NN)×
P (laughed|VBD)

13

Why the Name?

P (T, S) = P (END|tn−1, tn)
n∏

j=1

P (tj | tj−2, tj−1)

︸ ︷︷ ︸

Hidden Markov Chain

×
n∏

j=1

P (wj | tj)

︸ ︷︷ ︸

wj’s are observed

14

How to model P (T, S)?

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/Vt

Probability of generating base/Vt:

P (Vt | DT, JJ) × P (base | Vt)

15

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

– Basic definitions

– Parameter estimation

– The Viterbi Algorithm

• Log-linear taggers

• Log-linear models for parsing and other problems

16

Smoothed Estimation

P (Vt | DT, JJ) = λ1 ×
Count(Dt, JJ, Vt)

Count(Dt, JJ)

+λ2 ×
Count(JJ, Vt)

Count(JJ)

+λ3 ×
Count(Vt)
Count()

λ1 + λ2 + λ3 = 1, and for all i, λi ≥ 0

P (base | Vt) =
Count(Vt, base)

Count(Vt)

17

Dealing with Low-Frequency Words

A common method is as follows:

• Step 1: Split vocabulary into two sets

Frequent words = words occurring ≥ 5 times in training
Low frequency words = all other words

• Step 2: Map low frequency words into a small, finite set,
depending on prefixes, suffixes etc.

18

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class Example Intuition

twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization information
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other words

19

Dealing with Low-Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA
forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP
Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

⇓

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA
results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

20

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

– Basic definitions

– Parameter estimation

– The Viterbi Algorithm

• Log-linear taggers

• Log-linear models for parsing and other problems

21

The Viterbi Algorithm

• Question: how do we calculate the following?:

T ∗ = argmaxT log P (T, S)

• Define n to be the length of the sentence

• Define a dynamic programming table

π[i, u, v] = maximum log probability of a tag sequence ending

in tags u, v at position i

• Our goal is to calculate

max
u,v∈T

π[n, u, v]

22

The Viterbi Algorithm: Recursive Definitions

• Base case:

π[0, ∗, ∗] = log 1 = 0

π[0, u, v] = log 0 = −∞ for all other u, v

here ∗ is a special tag padding the beginning of the sentence.

• Recursive case: for i = 1 . . . n, for all u, v,

π[i, u, v] = max
t∈T ∪{∗}

{π[i − 1, t, u] + Score(S, i, t, u, v)}

Backpointers allow us to recover the max probability sequence:

BP[i, u, v] = argmax
t∈T ∪{∗} {π[i − 1, t, u] + Score(S, i, t, u, v)}

Where Score(S, i, t, u, v) = log P (v | t, u) + log P (wi | v)

Complexity is O(nk3), where n = length of sentence, k is number
of possible tags

23

The Viterbi Algorithm: Running Time

• O(n|T |3) time to calculate Score(S, i, t, u, v) for all i, t, u, v.

• n|T |2 entries in π to be filled in.

• O(T) time to fill in one entry

• ⇒ O(n|T |3) time

24

Pros and Cons

• Hidden markov model taggers are very simple to train
(just need to compile counts from the training corpus)

• Perform relatively well (over 90% performance on named
entities)

• Main difficulty is modeling

P (word | tag)

can be very difficult if “words” are complex

25

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

• Log-linear taggers

• Log-linear models for parsing and other problems

26

Log-Linear Models

• We have an input sentence S = w1, w2, . . . , wn

(wi is the i’th word in the sentence)

• We have a tag sequence T = t1, t2, . . . , tn
(ti is the i’th tag in the sentence)

• We’ll use an log-linear model to define

P (t1, t2, . . . , tn|w1, w2, . . . , wn)

for any sentence S and tag sequence T of the same length.
(Note: contrast with HMM that defines
P (t1, t2, . . . , tn, w1, w2, . . . , wn))

• Then the most likely tag sequence for S is

T ∗ = argmaxT P (T |S)

27

How to model P (T |S)?

A Trigram Log-Linear Tagger:

P (T |S) =
∏n

j=1 P (tj | w1 . . . wn, t1 . . . tj−1) Chain rule

=
∏n

j=1 P (tj | w1, . . . , wn, tj−2, tj−1)
Independence assumptions

• We take t0 = t−1 = *

• Independence assumption: each tag only depends on previous
two tags

P (tj|w1, . . . , wn, t1, . . . , tj−1) = P (tj|w1, . . . , wn, tj−2, tj−1)

28

An Example

Hispaniola/NNP quickly/RB became/VB an/DT
important/JJ base/?? from which Spain expanded
its empire into the rest of the Western Hemisphere .

• There are many possible tags in the position ??
Y = {NN, NNS, Vt, Vi, IN, DT, . . . }

• The input domain X is the set of all possible histories (or
contexts)

• Need to learn a function from (history, tag) pairs to a probability
P (tag|history)

29

Representation: Histories

• A history is a 4-tuple 〈t−2, t−1, w[1:n], i〉

• t−2, t−1 are the previous two tags.

• w[1:n] are the n words in the input sentence.

• i is the index of the word being tagged

• X is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• t−2, t−1 = DT, JJ

• w[1:n] = 〈Hispaniola, quickly, became, . . . , Hemisphere, .〉

• i = 6

30

Feature Vector Representations

• We have some input domain X , and a finite label set Y . Aim
is to provide a conditional probability P (y | x) for any x ∈ X
and y ∈ Y .

• A feature is a function f : X × Y → R

(Often binary features or indicator functions f : X × Y → {0, 1}).

• Say we have m features fk for k = 1 . . .m

⇒ A feature vector f(x, y) ∈ R
m for any x ∈ X and y ∈ Y .

31

An Example (continued)

• X is the set of all possible histories of form 〈t−2, t−1, w[1:n], i〉

• Y = {NN, NNS, Vt, Vi, IN, DT, . . . }

• We have m features fk : X × Y → R for k = 1 . . .m

For example:

f1(h, t) =

{

1 if current word wi is base and t = Vt
0 otherwise

f2(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

. . .

f1(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉, Vt) = 1
f2(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉, Vt) = 0
. . .

32

The Full Set of Features in [(Ratnaparkhi, 96)]

• Word/tag features for all word/tag pairs, e.g.,

f100(h, t) =

{

1 if current word wi is base and t = Vt
0 otherwise

• Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

f101(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

f102(h, t) =

{

1 if current word wi starts with pre and t = NN
0 otherwise

33

The Full Set of Features in [(Ratnaparkhi, 96)]

• Contextual Features, e.g.,

f103(h, t) =

{

1 if 〈t−2, t−1, t〉 = 〈DT, JJ, Vt〉
0 otherwise

f104(h, t) =

{

1 if 〈t−1, t〉 = 〈JJ, Vt〉
0 otherwise

f105(h, t) =

{

1 if 〈t〉 = 〈Vt〉
0 otherwise

f106(h, t) =

{

1 if previous word wi−1 = the and t = Vt
0 otherwise

f107(h, t) =

{

1 if next word wi+1 = the and t = Vt
0 otherwise

34

Log-Linear Models

• We have some input domain X , and a finite label set Y . Aim
is to provide a conditional probability P (y | x) for any x ∈ X
and y ∈ Y .

• A feature is a function f : X × Y → R

(Often binary features or indicator functions f : X × Y → {0, 1}).

• Say we have m features fk for k = 1 . . .m

⇒ A feature vector f(x, y) ∈ R
m for any x ∈ X and y ∈ Y .

• We also have a parameter vector v ∈ R
m

• We define

P (y | x,v) =
ev·f(x,y)

∑

y′∈Y ev·f(x,y′)

35

Training the Log-Linear Model

• To train a log-linear model, we need a training set (xi, yi) for
i = 1 . . . n. Then search for

v
∗ = argmax

v










∑

i

log P (yi|xi,v)

︸ ︷︷ ︸

Log−Likelihood

−
1

2σ2

∑

k

v2
k

︸ ︷︷ ︸

Gaussian Prior










(see last lecture on log-linear models)

• Training set is simply all history/tag pairs seen in the training
data

36

The Viterbi Algorithm for Log-Linear Models

• Question: how do we calculate the following?:

T ∗ = argmaxT log P (T |S)

• Define n to be the length of the sentence

• Define a dynamic programming table

π[i, u, v] = maximum log probability of a tag sequence ending

in tags u, v at position i

• Our goal is to calculate maxu,v∈T π[n, u, v]

37

The Viterbi Algorithm: Recursive Definitions

• Base case:

π[0, ∗, ∗] = log 1 = 0

π[0, u, v] = log 0 = −∞ for all other u, v

here ∗ is a special tag padding the beginning of the sentence.

• Recursive case: for i = 1 . . . n, for all u, v,

π[i, u, v] = max
t∈T ∪{∗}

{π[i − 1, t, u] + Score(S, i, t, u, v)}

Backpointers allow us to recover the max probability sequence:

BP[i, u, v] = argmax
t∈T ∪{∗} {π[i − 1, t, u] + Score(S, i, t, u, v)}

Where Score(S, i, t, u, v) = log P (v | t, u, w1, . . . , wn, i)

Identical to Viterbi for HMMs, except for the definition of
Score(S, i, t, u, v)

38

FAQ Segmentation: McCallum et. al

• McCallum et. al compared HMM and log-linear taggers on a
FAQ Segmentation task

• Main point: in an HMM, modeling

P (word|tag)

is difficult in this domain

39

FAQ Segmentation: McCallum et. al

<head>X-NNTP-POSTER: NewsHound v1.33
<head>
<head>Archive name: acorn/faq/part2
<head>Frequency: monthly
<head>

<question>2.6) What configuration of serial cable should I use
<answer>
<answer> Here follows a diagram of the necessary connections
<answer>programs to work properly. They are as far as I know t
<answer>agreed upon by commercial comms software developers fo
<answer>
<answer> Pins 1, 4, and 8 must be connected together inside
<answer>is to avoid the well known serial port chip bugs. The

40

FAQ Segmentation: Line Features
begins-with-number
begins-with-ordinal
begins-with-punctuation
begins-with-question-word
begins-with-subject
blank
contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe
contains-question-mark
ends-with-question-mark
first-alpha-is-capitalized
indented-1-to-4
indented-5-to-10
more-than-one-third-space
only-punctuation
prev-is-blank
prev-begins-with-ordinal
shorter-than-30

41

FAQ Segmentation: The Log-Linear Tagger

<head>X-NNTP-POSTER: NewsHound v1.33
<head>
<head>Archive name: acorn/faq/part2
<head>Frequency: monthly
<head>

<question>2.6) What configuration of serial cable should I use

Here follows a diagram of the necessary connections
programs to work properly. They are as far as I know t
agreed upon by commercial comms software developers fo

Pins 1, 4, and 8 must be connected together inside
is to avoid the well known serial port chip bugs. The

⇒ “tag=question;prev=head;begins-with-number”
“tag=question;prev=head;contains-alphanum”
“tag=question;prev=head;contains-nonspace”
“tag=question;prev=head;contains-number”
“tag=question;prev=head;prev-is-blank”

42

FAQ Segmentation: An HMM Tagger

<question>2.6) What configuration of serial cable should I use

• First solution for P (word | tag):

P (“2.6) What configuration of serial cable should I use” | question) =
P (2.6) | question)×
P (What | question)×
P (configuration | question)×
P (of | question)×
P (serial | question)×
. . .

• i.e. have a language model for each tag

43

FAQ Segmentation: McCallum et. al

• Second solution: first map each sentence to string of features:

<question>2.6) What configuration of serial cable should I use

⇒

<question>begins-with-number contains-alphanum contains-nonspace contains-number prev-is-blank

• Use a language model again:

P (“2.6) What configuration of serial cable should I use” | question) =
P (begins-with-number | question)×
P (contains-alphanum | question)×
P (contains-nonspace | question)×
P (contains-number | question)×
P (prev-is-blank | question)×

44

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

• Precision and recall results are for recovering segments

• ME-stateless is a log-linear model that treats every sentence seperately (no
dependence between adjacent tags)

• TokenHMM is an HMM with first solution we’ve just seen

• FeatureHMM is an HMM with second solution we’ve just seen

• MEMM is a log-linear trigram tagger (MEMM stands for “Maximum-
Entropy Markov Model”)

45

Overview

• The Tagging Problem

• Hidden Markov Model (HMM) taggers

• Log-linear taggers

• Log-linear models for parsing and other problems

46

Log-Linear Taggers: Summary

• The input sentence is S = w1 . . . wn

• Each tag sequence T has a conditional probability

P (T | S) =
∏n

j=1 P (tj | w1 . . . wn, t1 . . . tj−1) Chain rule

=
∏n

j=1 P (tj | w1 . . . wn, tj−2, tj−1) Independence
assumptions

• Estimate P (tj | w1 . . . wn, tj−2, tj−1) using log-linear models

• Use the Viterbi algorithm to compute

argmaxT∈T n log P (T | S)

47

A General Approach: (Conditional) History-Based Models

• We’ve shown how to define P (T | S) where T is a tag
sequence

• How do we define P (T | S) if T is a parse tree (or another
structure)?

48

A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

m is not necessarily the length of the sentence

• Step 2: the probability of a tree is

P (T | S) =
m∏

i=1

P (di | d1 . . . di−1, S)

• Step 3: Use a log-linear model to estimate

P (di | d1 . . . di−1, S)

• Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)

49

An Example Tree

S(questioned)

NP(lawyer)

DT

the

NN

lawyer

VP(questioned)

Vt

questioned

NP(witness)

DT

the

NN

witness

PP(about)

IN

about

NP(revolver)

DT

the

NN

revolver

50

Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags

2. Chunks

3. Remaining structure

51

Layer 1: Part-of-Speech Tags

DT

the

NN

lawyer

Vt

questioned

DT

the

NN

witness

IN

about

DT

the

NN

revolver

• Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

• First n decisions are tagging decisions

〈d1 . . . dn〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN 〉

52

Layer 2: Chunks

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Chunks are defined as any phrase where all children are part-
of-speech tags

(Other common chunks are ADJP, QP)

53

Layer 2: Chunks

Start(NP)

DT

the

Join(NP)

NN

lawyer

Other

Vt

questioned

Start(NP)

DT

the

Join(NP)

NN

witness

Other

IN

about

Start(NP)

DT

the

Join(NP)

NN

revolver

• Step 1: represent a tree as a sequence of decisions d1 . . . dn

T = 〈d1, d2, . . . dn〉

• First n decisions are tagging decisions
Next n decisions are chunk tagging decisions

〈d1 . . . d2n〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)〉

54

Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

• Join(X) or Start(X), where X is a label (NP, S, VP etc.)

• Check=YES or Check=NO

Meaning of these actions:

• Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join label above it)

• Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join label above it)

• Check=NO does nothing

• Check=YES takes previous Join or Start action, and converts
it into a completed constituent

55

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

56

Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

57

Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

58

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

59

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

60

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

61

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

62

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver

63

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver

Check=NO

64

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

Join(PP)

NP

DT

the

NN

revolver

65

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

66

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Join(VP)

PP

IN

about

NP

DT

the

NN

revolver

67

Start(S)

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

68

Start(S)

NP

DT

the

NN

lawyer

Join(S)

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

69

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

70

The Final Sequence of decisions

〈d1 . . . dm〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YES 〉

71

A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

m is not necessarily the length of the sentence

• Step 2: the probability of a tree is

P (T | S) =
m∏

i=1

P (di | d1 . . . di−1, S)

• Step 3: Use a log-linear model to estimate

P (di | d1 . . . di−1, S)

• Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)

72

Applying a Log-Linear Model

• Step 3: Use a log-linear model to estimate

P (di | d1 . . . di−1, S)

• A reminder:

P (di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v

∑

d∈A ef(〈d1...di−1,S〉,d)·v

where:

〈d1 . . . di−1, S〉 is the history

di is the outcome

f maps a history/outcome pair to a feature vector

v is a parameter vector

A is set of possible actions

73

Applying a Log-Linear Model

• Step 3: Use a log-linear model to estimate

P (di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v

∑

d∈A ef(〈d1...di−1,S〉,d)·v

• The big question: how do we define f?

• Ratnaparkhi’s method defines f differently depending on
whether next decision is:

– A tagging decision
(same features as before for POS tagging!)

– A chunking decision

– A start/join decision after chunking

– A check=no/check=yes decision

74

Layer 3: Join or Start

• Looks at head word, constituent (or POS) label, and start/join
annotation of n’th tree relative to the decision, where n =
−2,−1

• Looks at head word, constituent (or POS) label of n’th tree
relative to the decision, where n = 0, 1, 2

• Looks at bigram features of the above for (-1,0) and (0,1)

• Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

• The above features with all combinations of head words
excluded

• Various punctuation features

75

Layer 3: Check=NO or Check=YES

• A variety of questions concerning the proposed constituent

76

The Search Problem

• In POS tagging, we could use the Viterbi algorithm because

P (tj | w1 . . . wn, j, t1 . . . tj−1) = P (tj | w1 . . . wn, j, tj−2 . . . tj−1)

• Now: Decision di could depend on arbitrary decisions in the
“past” ⇒ no chance for dynamic programming

• Instead, Ratnaparkhi uses a beam search method

77

