
6.864 (Fall 2007): Lecture 5
Parsing and Syntax III
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Recap: Adding Head Words/Tags to Trees

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

• We now have lexicalized context-free rules, e.g.,

S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt)
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Recap: Lexicalized PCFGs

• We now need to estimate rule probabilities such as

Prob(S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt) | S(questioned,Vt))

• Sparse data is a problem. We have a huge number of non-
terminals, and a huge number of possible rules. We have to
work hard to estimate these rule probabilities...

• Once we have estimated these rule probabilities, we can find
the highest scoring parse tree under the lexicalized PCFG
using dynamic programming methods (see Problem set 1).
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Recap: Charniak’s Model

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• Charniak’s model decomposes the probability of each rule as:

Prob(X(h, t) ⇒ Ln(ltn) . . . L1(lt1)H(t)R1(rt1) . . . Rm(rtm) | X(h, t))

×

n∏

i=1

Prob(lwi | X(h, t), H, Li(lti)) ×

m∏

i=1

Prob(rwi | X(h, t), H, Ri(rti))

• For example,

Prob(S(questioned,Vt) ⇒ NP(lawyer,NN) VP(questioned,Vt) | S(questioned,Vt))

= Prob(S(questioned,Vt) ⇒ NP(NN) VP(Vt) | S(questioned,Vt))

= ×Prob(lawyer | S(questioned,Vt), VP, NP(NN))
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Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):
S(questioned,Vt)

⇓ P (NP(NN) VP | S(questioned,Vt))

S(questioned,Vt)

NP( ,NN) VP(questioned,Vt)

• Relies on counts of entire rules

• These counts are sparse:

– 40,000 sentences from Penn treebank have 12,409 rules.

– 15% of all test data sentences contain a rule never seen in training
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Modeling Rule Productions as Markov Processes

• Collins (1997), Model 1

S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) STOP

We first generate the head label of the rule
Then generate the left modifiers
Then generate the right modifiers

Ph(VP | S, told, V) ×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT) ×
Pd(STOP | S,VP,told,V,LEFT) ×
Pd(STOP | S,VP,told,V,RIGHT)
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The General Form of Model 1

• The general form of a lexicalized rule is as follows:

X(h, t) ⇒ Ln(lwn, ltn) . . . L1(lw1, lt1) H(h, t) R1(rw1, rt1) . . . Rm(rwm, rtm)

• Collins model 1 decomposes the probability of each rule as:

Ph(H | X, h, t) ×
n∏

i=1

Pd(Li(lwi, lti) | X, H, h, t, LEFT) ×

Pd(STOP | X, H, h, t, LEFT) ×
m∏

i=1

Pd(Ri(rwi, rti) | X, H, h, t, RIGHT) ×

Pd(STOP | X, H, h, t, RIGHT)
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• Ph term is a head-label probability

• Pd terms are dependency probabilities

• Both the Ph and Pd terms are smoothed, using similar
techniques to Charniak’s model
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Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models
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A Refinement: Adding a Distance Variable

• ∆ = 1 if position is adjacent to the head, 0 otherwise

S(told,V)

?? VP(told,V)

⇓

S(told,V)

NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V)×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1)
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A Refinement: Adding a Distance Variable

• ∆ = 1 if position is adjacent to the head.

S(told,V)

?? NP(Hillary,NNP) VP(told,V)

⇓

S(told,V)

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

Ph(VP | S, told, V) × Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0)
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The Final Probabilities
S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V) STOP

Ph(VP | S, told, V)×
Pd(NP(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1)×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0)×
Pd(STOP | S,VP,told,V,LEFT,∆ = 0)×
Pd(STOP | S,VP,told,V,RIGHT,∆ = 1)
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Adding the Complement/Adjunct Distinction

S

NP

subject

VP

V

verb

S(told,V)

NP(yesterday,NN)

NN

yesterday

NP(Hillary,NNP)

NNP

Hillary

VP(told,V)

V

told

. . .

• Hillary is the subject

• yesterday is a temporal modifier

• But nothing to distinguish them.
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Adding the Complement/Adjunct Distinction

VP

V

verb

NP

object
VP(told,V)

V

told

NP(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR(that,COMP)

. . .

• Bill is the object

• yesterday is a temporal modifier

• But nothing to distinguish them.
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Complements vs. Adjuncts

• Complements are closely related to the head they modify,
adjuncts are more indirectly related

• Complements are usually arguments of the thing they modify
yesterday Hillary told . . . ⇒ Hillary is doing the telling

• Adjuncts add modifying information: time, place, manner etc.
yesterday Hillary told . . . ⇒ yesterday is a temporal modifier

• Complements are usually required, adjuncts are optional

vs. yesterday Hillary told . . . (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told . . . (ungrammatical)
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Adding Tags Making the Complement/Adjunct Distinction

S

NP-C

subject

VP

V

verb

S

NP

modifier

VP

V

verb
S(told,V)

NP(yesterday,NN)

NN

yesterday

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V)

V

told

. . .
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Adding Tags Making the Complement/Adjunct Distinction

VP

V

verb

NP-C

object

VP

V

verb

NP

modifier

VP(told,V)

V

told

NP-C(Bill,NNP)

NNP

Bill

NP(yesterday,NN)

NN

yesterday

SBAR-C(that,COMP)

. . .
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Adding Subcategorization Probabilities

• Step 1: generate category of head child

S(told,V)

⇓

S(told,V)

VP(told,V)

Ph(VP | S, told, V)
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Adding Subcategorization Probabilities

• Step 2: choose left subcategorization frame

S(told,V)

VP(told,V)

⇓

S(told,V)

VP(told,V)
{NP-C}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)
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• Step 3: generate left modifiers in a Markov chain

S(told,V)

?? VP(told,V)
{NP-C}

⇓

S(told,V)

NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)×
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})
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S(told,V)

?? NP-C(Hillary,NNP) VP(told,V)
{}

⇓

S(told,V)

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,{})
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S(told,V)

?? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

⇓

S(told,V)

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V)
{}

Ph(VP | S, told, V) × Plc({NP-C} | S, VP, told, V)
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,{})×
Pd(STOP | S,VP,told,V,LEFT,{})
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The Final Probabilities
S(told,V)

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V) STOP

Ph(VP | S, told, V)×
Plc({NP-C} | S, VP, told, V)×
Pd(NP-C(Hillary,NNP) | S,VP,told,V,LEFT,∆ = 1,{NP-C})×
Pd(NP(yesterday,NN) | S,VP,told,V,LEFT,∆ = 0,{})×
Pd(STOP | S,VP,told,V,LEFT,∆ = 0,{})×
Prc({} | S, VP, told, V)×
Pd(STOP | S,VP,told,V,RIGHT,∆ = 1,{})
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Another Example

VP(told,V)

V(told,V) NP-C(Bill,NNP) NP(yesterday,NN) SBAR-C(that,COMP)

Ph(V | VP, told, V)×
Plc({} | VP, V, told, V)×
Pd(STOP | VP,V,told,V,LEFT,∆ = 1,{})×
Prc({NP-C, SBAR-C} | VP, V, told, V)×
Pd(NP-C(Bill,NNP) | VP,V,told,V,RIGHT,∆ = 1,{NP-C, SBAR-C})×
Pd(NP(yesterday,NN) | VP,V,told,V,RIGHT,∆ = 0,{SBAR-C})×
Pd(SBAR-C(that,COMP) | VP,V,told,V,RIGHT,∆ = 0,{SBAR-C})×
Pd(STOP | VP,V,told,V,RIGHT,∆ = 0,{})
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Summary

• Identify heads of rules ⇒ dependency representations

• Presented two variants of PCFG methods applied to
lexicalized grammars.

– Break generation of rule down into small (markov
process) steps

– Build dependencies back up (distance, subcategorization)
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Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models
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Evaluation: Representing Trees as Constituents

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

⇓

Label Start Point End Point

NP 1 2
NP 4 5
VP 3 5
S 1 5
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Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

• G = number of constituents in gold standard = 7

• P = number in parse output = 6

• C = number correct = 6

Recall = 100% ×
C

G
= 100% ×

6

7
Precision = 100% ×

C

P
= 100% ×

6

6
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Results

Method Recall Precision

PCFGs (Charniak 97) 70.6% 74.8%
Conditional Models – Decision Trees (Magerman 95) 84.0% 84.3%
Generative Lexicalized Model (Charniak 97) 86.7% 86.6%
Model 1 (no subcategorization) 87.5% 87.7%
Model 2 (subcategorization) 88.1% 88.3%
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Effect of the Different Features

MODEL A V R P
Model 1 NO NO 75.0% 76.5%
Model 1 YES NO 86.6% 86.7%
Model 1 YES YES 87.8% 88.2%
Model 2 NO NO 85.1% 86.8%
Model 2 YES NO 87.7% 87.8%
Model 2 YES YES 88.7% 89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization,
Model 2 has subcategorization. A = YES, V = YES mean that the
adjacency/verb conditions respectively were used in the distance measure. R/P =
recall/precision.
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Weaknesses of Precision and Recall

Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

NP attachment:
(S (NP The men) (VP dumped (NP (NP large sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP large sacks) (PP of (NP the substance))))
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S(told,V)

NP-C(Hillary,NNP)

NNP

Hillary

VP(told,V)

V(told,V)

V

told

NP-C(Clinton,NNP)

NNP

Clinton

SBAR-C(that,COMP)

COMP

that

S-C

NP-C(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP-C(president,NN)

NN

president

( told V TOP S SPECIAL)
(told V Hillary NNP S VP NP-C LEFT)
(told V Clinton NNP VP V NP-C RIGHT)
(told V that COMP VP V SBAR-C RIGHT)
(that COMP was Vt SBAR-C COMP S-C RIGHT)
(was Vt she PRP S-C VP NP-C LEFT)
(was Vt president NN VP Vt NP-C RIGHT)
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Dependency Accuracies

• All parses for a sentence with n words have n dependencies
Report a single figure, dependency accuracy

• Model 2 with all features scores 88.3% dependency accuracy
(91% if you ignore non-terminal labels on dependencies)

• Can calculate precision/recall on particular dependency types
e.g., look at all subject/verb dependencies ⇒
all dependencies with label (S,VP,NP-C,LEFT)

Recall = number of subject/verb dependencies correct
number of subject/verb dependencies in gold standard

Precision = number of subject/verb dependencies correct
number of subject/verb dependencies in parser’s output
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R CP P Count Relation Rec Prec
1 29.65 29.65 11786 NPB TAG TAG L 94.60 93.46
2 40.55 10.90 4335 PP TAG NP-C R 94.72 94.04
3 48.72 8.17 3248 S VP NP-C L 95.75 95.11
4 54.03 5.31 2112 NP NPB PP R 84.99 84.35
5 59.30 5.27 2095 VP TAG NP-C R 92.41 92.15
6 64.18 4.88 1941 VP TAG VP-C R 97.42 97.98
7 68.71 4.53 1801 VP TAG PP R 83.62 81.14
8 73.13 4.42 1757 TOP TOP S R 96.36 96.85
9 74.53 1.40 558 VP TAG SBAR-C R 94.27 93.93

10 75.83 1.30 518 QP TAG TAG R 86.49 86.65
11 77.08 1.25 495 NP NPB NP R 74.34 75.72
12 78.28 1.20 477 SBAR TAG S-C R 94.55 92.04
13 79.48 1.20 476 NP NPB SBAR R 79.20 79.54
14 80.40 0.92 367 VP TAG ADVP R 74.93 78.57
15 81.30 0.90 358 NPB TAG NPB L 97.49 92.82
16 82.18 0.88 349 VP TAG TAG R 90.54 93.49
17 82.97 0.79 316 VP TAG SG-C R 92.41 88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank,
as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage;
Rec = Recall; Prec = precision.
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Type Sub-type Description Count Recall Precision

Complement to a verb S VP NP-C L Subject 3248 95.75 95.11
VP TAG NP-C R Object 2095 92.41 92.15

6495 = 16.3% of all cases VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG-C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
S VP S-C L 104 93.27 78.86
S VP SG-C L 14 78.57 68.75
...
TOTAL 6495 93.76 92.96

Other complements PP TAG NP-C R 4335 94.72 94.04
VP TAG VP-C R 1941 97.42 97.98

7473 = 18.8% of all cases SBAR TAG S-C R 477 94.55 92.04
SBAR WHNP SG-C R 286 90.56 90.56
PP TAG SG-C R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR WHNP S-C R 42 66.67 84.85
SBAR TAG SG-C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR WHPP S-C R 16 100.00 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
...
TOTAL 7473 94.47 94.12
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Type Sub-type Description Count Recall Precision

PP modification NP NPB PP R 2112 84.99 84.35
VP TAG PP R 1801 83.62 81.14

4473 = 11.2% of all cases S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
...
TOTAL 4473 82.29 81.51

Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47

763 = 1.9% of all cases S S S R 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
...
TOTAL 763 61.47 62.20
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Type Sub-type Description Count Recall Precision

Mod’n within BaseNPs NPB TAG TAG L 11786 94.60 93.46
NPB TAG NPB L 358 97.49 92.82

12742 = 29.6% of all cases NPB TAG TAG R 189 74.07 75.68
NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
...
TOTAL 12742 93.20 92.59

Mod’n to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54

1418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
...
TOTAL 1418 73.20 75.49
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Type Sub-type Description Count Recall Precision

Sentential head TOP TOP S R 1757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51

1917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
...
TOTAL 1917 94.99 94.99

Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49

2242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
...
TOTAL 2242 75.11 78.44
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Some Conclusions about Errors in Parsing

• “Core” sentential structure (complements, NP chunks)
recovered with over 90% accuracy.

• Attachment ambiguities involving adjuncts are resolved with
much lower accuracy (≈ 80% for PP attachment, ≈ 50− 60%
for coordination).
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Overview of Today’s Lecture

• Refinements to Model 1

• Evaluating parsing models

• Extensions to the parsing models
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Trigram Language Models (from Lecture 2)

Step 1: The chain rule (note that wn+1 = STOP)

P (w1, w2, . . . , wn) =
n+1∏

i=1

P (wi | w1 . . . wi−1)

Step 2: Make Markov independence assumptions:

P (w1, w2, . . . , wn) =
n+1∏

i=1

P (wi | wi−2, wi−1)

For Example

P (the, dog, laughs) = P (the | START) ×P (dog | START, the)
×P (laughs | the, dog) ×P (STOP | dog, laughs)
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Parsing Models as Language Models

• Generative models assign a probability P (T, S) to each
tree/sentence pair

• Say sentence is S, set of parses for S is T (S), then

P (S) =
∑

T∈T (S)

P (T, S)

• Can calculate perplexity for parsing models
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A Quick Reminder of Perplexity

• We have some test data, n sentences

S1, S2, S3, . . . , Sn

• We could look at the probability under our model
∏n

i=1 P (Si).
Or more conveniently, the log probability

log
n∏

i=1

P (Si) =
n∑

i=1

log P (Si)

• In fact the usual evaluation measure is perplexity

Perplexity = 2−x where x =
1

W

n∑

i=1

log P (Si)

and W is the total number of words in the test data.
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Trigrams Can’t Capture Long-Distance Dependencies

Actual Utterance: He is a resident of the U.S. and of the U.K.

Recognizer Output: He is a resident of the U.S. and that the U.K.

• Bigram and that is around 15 times as frequent as and of
⇒ Bigram model gives over 10 times greater probability to incorrect string

• Parsing models assign 78 times higher probability to the correct string
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Examples of Long-Distance Dependencies

Subject/verb dependencies

Microsoft, the world’s largest software company, acquired . . .

Object/verb dependencies

. . . acquired the New-York based software company . . .

Appositives

Microsoft, the world’s largest software company, acquired . . .

Verb/Preposition Collocations

I put the coffee mug on the table

The USA elected the son of George Bush Sr. as president

Coordination

She said that . . . and that . . .
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Work on Parsers as Language Models

• “The Structured Language Model”. Ciprian Chelba and Fred
Jelinek, see also recent work by Peng Xu, Ahmad Emami and
Fred Jelinek.

• “Probabilistic Top-Down Parsing and Language Modeling”.
Brian Roark.

• “Immediate Head-Parsing for Language Models”.
Eugene Charniak.
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Some Perplexity Figures from (Charniak, 2000)

Model Trigram Grammar Interpolation
Chelba and Jelinek 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Charniak 167.89 144.98 133.15

• Interpolation is a mixture of the trigram and grammatical models

• Chelba and Jelinek, Roark use trigram information in their grammatical
models, Charniak doesn’t!

• Note: Charniak’s parser in these experiments is as described in (Charniak
2000), and makes use of Markov processes generating rules (a shift away
from the Charniak 1997 model).
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Extending Charniak’s Parsing Model

S(questioned,Vt)

NP( ,NN) VP(questioned,Vt)

⇓ P (lawyer | S,VP,NP,NN, questioned,Vt))

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)
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Extending Charniak’s Parsing Model

She said that the lawyer questioned him

⇒ bigram lexical probabilies

P (questioned | SBAR,COMP,S,Vt, that,COMP))
P (lawyer | S,VP,NP,NN, questioned,Vt))
P (him | VP,Vt,NP,PRP, questioned,Vt)) . . .
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Adding Syntactic Trigrams

SBAR(that,COMP)

COMP

that

S(questioned,Vt)

NP( ,NN) VP(questioned,Vt)

⇓ P (lawyer | S,VP,NP,NN, questioned,Vt, that)

SBAR(that,COMP)

COMP

that

S(questioned,Vt)

NP(lawyer,NN) VP(questioned,Vt)

51

Extending Charniak’s Parsing Model

She said that the lawyer questioned him

⇒ trigram lexical probabilies

P (questioned | SBAR,COMP,S,Vt, that,COMP, said))
P (lawyer | S,VP,NP,NN, questioned,Vt, that))
P (him | VP,Vt,NP,PRP, questioned,Vt,that)) . . .
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Some Perplexity Figures from (Charniak, 2000)

Model Trigram Grammar Interpolation
Chelba and Jelinek 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Charniak 167.89 144.98 133.15
(Bigram)
Charniak 167.89 130.20 126.07
(Trigram)
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Model 3: A Model of Wh-Movement

• Examples of Wh-movement:

Example 1 The person (SBAR who TRACE bought the shoes)

Example 2 The shoes (SBAR that I bought TRACE last week)

Example 3 The person (SBAR who I bought the shoes from TRACE)

Example 4 The person (SBAR who Jeff said I bought the shoes from TRACE)

• Key ungrammatical examples:

Example 1 The person (SBAR who Fran and TRACE bought the shoes)
(derived from Fran and Jeff bought the shoes)

Example 2
The store (SBAR that Jeff bought the shoes because Fran likes TRACE)
(derived from Jeff bought the shoes because Fran likes the store)
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The Parse Trees at this Stage

NP(shoes,NNS)

NP(shoes,NNS)

The shoes

SBAR(that,WDT)

WHNP(that,WDT)

WDT

that

S-C(bought,Vt)

NP-C(I,PRP)

I

VP(bought,Vt)

Vt

bought

NP(week,NN)

last week

It’s difficult to recover “shoes” as the object of “bought”
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Adding Gaps and Traces
NP(shoes,NNS)

NP(shoes,NNS)

The shoes

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

WDT

that

S-C(bought,Vt)(+gap)

NP-C(I,PRP)

I

VP(bought,Vt)(+gap)

Vt

bought

TRACE NP(week,NN)

last week

It’s easy to recover “shoes” as the object of “bought”
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Adding Gaps and Traces

• This information can be recovered from the treebank

• Doubles the number of non-terminals
(with/without gaps)

• Similar to treatment of Wh-movement in GPSG
(generalized phrase structure grammar)

• If our parser recovers this information, it’s easy to recover
syntactic relations
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New Rules: Rules that Generate Gaps

NP(shoes,NNS)

NP(shoes,NNS) SBAR(that,WDT)(+gap)

• Modeled in a very similar way to previous rules
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New Rules: Rules that Pass Gaps down the Tree

• Passing a gap to a modifier

SBAR(that,WDT)(+gap)

WHNP(that,WDT) S-C(bought,Vt)(+gap)

• Passing a gap to the head

S-C(bought,Vt)(+gap)

NP-C(I,PRP) VP(bought,Vt)(+gap)
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New Rules: Rules that Discharge Gaps as a Trace

• Discharging a gap as a TRACE

VP(bought,Vt)(+gap)

Vt(bought,Vt) TRACE NP(week,NN)
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Adding Gap Propagation (Example 1)

• Step 1: generate category of head child

SBAR(that,WDT)(+gap)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

Ph(WHNP | SBAR, that, WDT)
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Adding Gap Propagation (Example 1)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)

• In this case left modifiers are generated as before
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Adding Gap Propagation (Example 1)

• Step 3: choose right subcategorization frame

SBAR(that,WDT)(+gap)

WHNP(that,WDT)

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{S-C,+gap}

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)×
Prc({S-C} | SBAR, WHNP, that, WDT)

63

Adding Gap Propagation (Example 1)

• Step 4: Generate right modifiers

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{S-C,+gap}

??

⇓

SBAR(that,WDT)(+gap)

WHNP(that,WDT)
{}

S-C(bought,Vt)(+gap)

Ph(WHNP | SBAR, that, WDT) × Pg(RIGHT | SBAR, that, WDT)×
Prc({S-C} | SBAR, WHNP, that, WDT)×
Pd(S-C(bought,Vt)(+gap) | SBAR, WHNP, that, WDT, RIGHT, {S-C,+gap})
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Adding Gap Propagation (Example 2)

• Step 1: generate category of head child

S-C(bought,Vt)(+gap)

⇓

S-C(bought,Vt)(+gap)

VP(bought,Vt)

Ph(VP | S-C, bought, Vt)
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Adding Gap Propagation (Example 2)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

S-C(bought,Vt)(+gap)

VP(bought,Vt)

⇓

S-C(bought,Vt)(+gap)

VP(bought,Vt)(+gap)

Ph(VP | S-C, bought, Vt) × Pg(HEAD | S-C, VP, bought, Vt)

• In this case we’re done: rest of rule is generated as before
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Adding Gap Propagation (Example 3)

• Step 1: generate category of head child

VP(bought,Vt)(+gap)

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)

Ph(Vt | VP, bought, Vt)
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Adding Gap Propagation (Example 3)

• Step 2: choose to propagate the gap to the head, or to the left
or right of the head

VP(bought,Vt)(+gap)

VP(bought,Vt)

⇓

VP(bought,Vt)(+gap)

VP(bought,Vt)

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)

• In this case left modifiers are generated as before
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Adding Gap Propagation (Example 3)

• Step 3: choose right subcategorization frame

VP(bought,Vt)(+gap)

Vt(bought,Vt)

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{NP-C,+gap}

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)
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Adding Gap Propagation (Example 3)

• Step 4: generate right modifiers

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{NP-C,+gap}

??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})
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Adding Gap Propagation (Example 3)

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE ??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN)

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})×
Pd(NP(yesterday,NN) | VP, Vt, bought, Vt, RIGHT, {})
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Adding Gap Propagation (Example 3)

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN) ??

⇓

VP(bought,Vt)(+gap)

Vt(bought,Vt)
{}

TRACE NP(yesterday,NN) STOP

Ph(Vt | SBAR, that, WDT) × Pg(RIGHT | VP, Vt, bought, Vt)×
Prc({NP-C} | VP, Vt, bought, Vt)×
Pd(TRACE | VP, Vt, bought, Vt, RIGHT, {NP-C,+gap})×
Pd(NP(yesterday,NN) | VP, Vt, bought, Vt, RIGHT, {})×
Pd(STOP | VP, Vt, bought, Vt, RIGHT, {})
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Ungrammatical Cases Contain Low Probability Rules

Example 1 The person (SBAR who Fran and TRACE bought the shoes)

S-C(bought,Vt)(+gap)

NP-C(Fran,NNP)(+gap)

NP(Fran,NNP) CC TRACE

VP(bought,Vt)

Example 2 The store (SBAR that Jeff bought the shoes because Fran likes TRACE)

VP(bought,Vt)(+gap)

Vt(bought,Vt) NP-C(shoes,NNS) SBAR(because,COMP)(+gap)
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