Heads in Context-Free Rules

Add annotations specifying the “head” of each rule:

Vi
Vit
NN
NN
NN
DT
IN
IN

sleeps
saw

man
woman
telescope
the

with

in

S

VP
6.864 (Fall 2007): Lecture 4 VP

Parsing and Syntax |1 VP
NP
NP
PP

NP VP
Vi
Vit NP
VP
DT NN
NP
IN

R AR

R R R R

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

Overview More about Heads

e Each context-free rule has one “special” child that is the head

e Heads in context-free rules of the rule. e.g

S = NP VP (VP is the head)
VP = Vit NP (Vtis the head)
NP = DT NN NN (NN is the head)

e The anatomy of lexicalized rules

e Dependency representations of parse trees o
e A core idea in syntax

_) (e.g., see X-bar Theory, Head-Driven Phrase Structure
e Two models making use of dependencies Grammar)

— Charniak (1997) e Some intuitions:

— Collins (1997) — The central sub-constituent of each rule.
— The semantic predicate in each rule.

Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
ElseIf the rule contains a JJ: Choose the rightmost JJ
Else|If the rule contains a CD: Choose the rightmost CD
Else Choose the rightmost child
eg.,

NP DT NNP NN

NP DT NN NNP

NP NP PP

NP DT 1
NP DT

Adding Headwords to Trees

DT

| |
the lawyer |
questioned DT NN

|
the witness

4
S(questioned)

NP(lavyer) V P(questioned)

/\ /\
DT(the) NN(lawyer)

| | Vt(questioned) NP(witness)
the lawyer |
questioned pT(he) NN(Witness)
| |

the witness

Rules which Recover Heads:
An Example of rules for VPs

If the rule contains Vi or VVt: Choose the leftmost Vi or Vt
Else If the rule contains an VVP: Choose the leftmost VP

Else Choose the leftmost child

e.g.,
VP = Vt NP
VP = VP PP

Adding Headwords to Trees

S(questioned)

NP(lawyer) VP(questioned)

DT(the) NN(lawyer
(|) (a|\wy) Vt(questioned) NP(witness)
the lawyer |
questioned prthe) NN(witness)
| |

the witness

e A constituent receives its headword from its head child.

S = NP VP (Sreceives headword from VP)
VP = Vt NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)

Chomsky Normal Form

A context free grammar G = (N, X, R, S) in Chomsky Normal
Form is as follows

e N is a set of non-terminal symbols

e Y is a set of terminal symbols

e R isaset of rules which take one of two forms:
- X-YYofor X e NyandYy,Yo € N
- X —-YforXeN,andY € ¥

e S € N isadistinguished start symbol

We can find the highest scoring parse under a PCFG in this
form, in O(n?3|R|) time where n is the length of the string being
parsed, and |R| is the number of rules in the grammar (see the
dynamic programming algorithm in the previous notes)

A New Form of Grammar

e The new form of grammar looks just like a Chomsky normal
form CFG, but with potentially O(|3|? x |N|?) possible rules.

e Naively, parsing an n word sentence using the dynamic
programming algorithm will take O(n?®|X?|N|3) time. But
|%| can be huge!!

e Crucial observation: at most O(n® x |N|?) rules can be
applicable to a given sentence w1, ws, . . . w, of length n. This
is because any rules which contain a lexical item that is not
one of w;, ... w,, can be safely discarded.

e The result: we can parse in O(n®| N |?) time.

A New Form of Grammar

We define the following type of “lexicalized” grammar:
(we’ll call this is a lexicalized Chomsky normal form grammar)

e N is a set of non-terminal symbols
e Y is a set of terminal symbols
e [?is a set of rules which take one of three forms:

— X(h) = Yi(h) Yo(w) for X € N,andY3,Y; € N,and h,w € ¥
— X(h) = Y1(w) Ya(h) for X € N,and Y7,Y> € N,and h,w € ¥
— X(h) - hfor X e Nyandh € &

e S € N isadistinguished start symbol

Adding Headtags to Trees

S(questioned, Vt)

NP(lawyer, NN) VP(questioned, V1)

/\
DT NN
| | Vit NP(witness, NN)
the lawyer \ BN
questioned DT NN
|

the witness

e Also propagate part-of-speech tags up the trees
(We’ll see soon why this is useful!)

Overview

e Heads in context-free rules
e The anatomy of lexicalized rules
e Dependency representations of parse trees

e Two models making use of dependencies

— Charniak (1997)
— Collins (1997)

The Parent of a Lexicalized Rule

An example lexicalized rule:
VP(told,V) = V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

e The parent of the rule is the non-terminal on the left-hand-
side (LHS) of the rule

e e.g., VP(told,V) in the above example

e We will also refer to the parent label, parent word, and
parent tag. In this case:
1. Parent label is VP
2. Parent word is told
3. Parenttag is V

Non-terminals in Lexicalized rules

An example lexicalized rule:

VP(told,V) = V(told,V) NP(Clinton,NNP) SBAR(that, COMP)

e Each non-terminal is a triple consisting of:

1. A label
2. A word
3. Atag (i.e., a part-of-speech tag)

e E.g., for VP(told,V): label = VP, word = told, tag = V

for V(told,V): label =V, word = told, tag = V

The Head of a Lexicalized Rule

An example lexicalized rule:
VP(told,V) = V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

e The head of the rule is a single non-terminal on the right-hand-
side (RHS) of the rule

e e.g., V(told,V) is the head in the above example.

e \We will also refer to the head label, head word, and head
tag. In this case:
1. Head label is V
2. Head word is told
3. Head tag is V

e Note: we always have

— parent word = head word
— parent tag = head tag

The Left-Modifiers of a Lexicalized Rule

Another example lexicalized rule:

S(told,V) = NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

e The left-modifiers of the rule are any non-terminals appearing
to the left of the head

e In this example there are two left-modifiers:

— NP(yesterday,NN)
— NP(Hillary,NNP)

The Left-Modifiers of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) = V(told,VV) NP(Clinton,NNP) SBAR(that, COMP)

e The left-modifiers of the rule are any non-terminals appearing
to the left of the head

e In this example there are no left-modifiers

e In general there can be any number (0 or greater) of left-
modifiers

The Right-Modifiers of a Lexicalized Rule

An example lexicalized rule:

VP(told,V) = V(told,V) NP(Clinton,NNP) SBAR(that,COMP)

e The right-modifiers of the rule are any non-terminals
appearing to the right of the head

e In this example there are two right-modifiers:

— NP(Clinton,NNP)
— SBAR(that, COMP)

e In general there can be any number (O or greater) of right-
modifiers

The General Form of a Lexicalized Rule

e The general form of a lexicalized rule is as follows:

X (h,t) = Lyp(lwy,lty) ... Li(lw1,lt1) H(h,t) Ri(rwi,rt1) ... Ry (rwm, 7tm)

e X (h,t) is the parent of the rule

e H(h,t) is the head of the rule

e There are n left modifiers, L;(lw;,lt;) fori=1...n

e There are m right-modifiers, R;(rw;,rt;) fori=1...m

e There can be zero or more left or right modifiers:
ie,n>0andm >0

Overview

e Heads in context-free rules
e The anatomy of lexicalized rules
e Dependency representations of parse trees

e Two models making use of dependencies

— Charniak (1997)
— Collins (1997)

e X H L;fori=1...nand R; fori =1...m are labels
e h,lw;fori =1...nand rw; for: =1...m are words

o t, lt;fori=1...nandrt; fori =1...m are tags

Headwords and Dependencies

e A new representation: a tree is represented as a set of
dependencies, not a set of context-free rules
e A dependency is an 8-tuple:

(head-word, head-tag,
modifer-word, modifer-tag,
parent-label, head-label,
modifier-label, direction)

e Each rule with n children contributes (n — 1) dependencies.
There is one dependency for each left or right modifier
VP(questioned,Vt) = Vt(questioned,Vt) NP(lawyer,NN)

Y
(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)

24

Headwords and Dependencies

VP(told,V)

V(told,V) NP(Clinton,NNP) SBAR(that, COMP)

head-word head-tag mod-word mod-tag parent-label head-label mod-label direction

told \% Clinton NNP VP \% NP RIGHT
told \Y that COMP VP \% SBAR RIGHT

S(told,V)

NP(Hillary,NNP) VP(told,V)

|
NNP

|
Hillary

V(told,v) NP(Clinton,NNP) SBAR(that, COMP)
|

|
v NNP

[|
told Clinton COlM P
that
NP(she,PRP) VP(was,Vt)
|

PRP <
| Vt NP(president,NN)
she |
was NN

|
president

- told _ SPECIAL)
Hillary NP LEFT)

\% Clinton NP RIGHT)

Vv that SBAR RIGHT)

COMP was S RIGHT)

Vit she NP LEFT)

Vit president NP RIGHT)

A Special Case: the Top of the Tree

TOP

S(tol|d,V)

4

(_, __, told, V, TOP, S, __, SPECIAL)

Overview

e Heads in context-free rules
e The anatomy of lexicalized rules
e Dependency representations of parse trees

e Two models making use of dependencies

— Charniak (1997)
— Collins (1997)

A Model from Charniak (1997)
S(questioned, Vt)

(! Prob(NP(NN) VP(Vt) | S(questioned,Vt))
S(questioned, Vt)

NP(__,NN) VP(questioned,Vt)
(! Prob(lawyer | S(questioned,Vt),VP,NP(NN))
S(questioned, Vt)
NP(lawyer,NN) VP(questioned,Vt)

29

Dissecting Charniak’s Model: Rule Probabilities

e First term of Charniak’s model:

Prob(X (h,t) = Ln(lty) ... Lyt H(E)Ry(rt1) . .. Rin(rtm) | X (h,t))

e This corresponds to a choice of context-free rule,
at this stage no modifier words are generated

e For our old example rule,
VP(told,V) = V(told,V) NP(Clinton,NNP) SBAR(that,COMP)
we would have

P(VP(told,V) = V(V) NP(NNP) SBAR(COMP) | VP(told,V))

The General Form of Charniak’s Model

e The general form of a lexicalized rule is as follows:

X (h,t) = Lyp(lwy,lty) ... Li(lw1,lt1) H(h,t) Ri(rwi,rt1) ... Ry (rwm, 7tm)

e Charniak’s model decomposes the probability of each rule as:

Prob(X (h,t) = Ln(ity) ... Ly(It)) HE) Ry (rt1) . .. Run(rtm) | X (R, 1))

x [[Probws | X (h,t), H, Li(1t:))

i=1

x [[Prob(rw: | X (h,t), H, Ri(rt.))

=1

Dissecting Charniak’s Model: Modifier Probabilities

e For each right modifier, there is a term
Prob(rw; | X(h,t), H, R;(rt;))

e This corresponds to generating the modifier word rw; for the
7’th right modifier.

e This probability is conditioned on

1. the head-word h,
2. thelabels X, H, and R;

3. thetagst and rt;.

e \We now have a probability that is sensitive to the dependency
between rw; and h

e There is a similar probability for each left modifier

Smoothed Estimation

P(NP(NN) VP(Vt) | S(questioned,Vt)) =

Ay x Count (S(questioned,Vt)—~NP(NN) VP(Vt))
Count S(questloned Vt)

Count S(__,Vt)—>NP(N N) VP(Vt)
Count(S(,Vt))

+Xo

OWhereOS)\l,)\QS l,and Ay + Xy =1

P(NP(lawyer,NN) VP | S(questioned,Vt)) =

()\ v count(S(questioned,Vt)—=NP(NN) VP(Vt))
1 count(S(questioned,Vt))

Count(S(__, V) -NP(NN) VP(V))
')\2 X C’ount(S(__,Vt)))

x (A % count(lawyer | S(questioned,Vt), VP, NP(NN))
3 count(S(questioned, Vi), VP, NP(NN))

+N\ X Count(lawyer | S(__,Vt), VP, NP(NN))
1 Comnt SV, VP NP(NN),

count(lawyer | NN)
+)\5 X Count(NN)

Smoothed Estimation

P(lawyer | S(questioned,Vt), VP, NP(NN)) =

count(lawyer | S(questioned,Vt), VP, NP(NN)

Az % Count(S(questioned, V), VP, NP(NN))

A Count IaNyer | S(_,Vt) VP, NP(NN)
X T ot (V). VB NP(NN))

C’ount(laNyer | NN)
Count(NN)

‘|—)\5 X

e Where) < M3, A\, A5 < l,and A3+ M\ + X5 =1

Motivation for Breaking Down Rules

e First step of decomposition of (Charniak 1997):
S(questioned,Vt)

[} P(NP(NN) VP | S(questioned,Vt))
S(questioned,Vt)

NP(__,NN) VP(questioned,Vt)

e Relies on counts of entire rules

e These counts are sparse:

— 40,000 sentences from Penn treebank have 12,409 rules.

— 15% of all test data sentences contain arule never seenin training

Motivation for Breaking Down Rules Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

Rule Count || No. of Rules | Percentage || No. of Rules | Percentage
by Type by Type by token by token
6765 54.52 6765 0.72 S(told,V)
1688 13.60 3376 0.36
695 5.60 2085 0.22
457 3.68 1828 0.19
329 2.65 1645 0.18
6...10 835 6.73 6430 0.68 4
11..20 496 4.00 7219 0.77
21...50 501 4.04 15931 1.70 S(told,V)
51...100 204 164 14507 154
> 100 439 354 879596 93.64

/\
72 VP(told,V)

NP(Hillary,NNP) VP(told,V)
Statistics for rules taken from sections 2-21 of the treebank
(Table taken from my PhD thesis). Ph(VP \ S, told, V) X Pd(NP(HiIIary,NNP)] S,VP,toId,V,LEFT)

Modeling Rule Productions as Markov Processes Modeling Rule Productions as Markov Processes

e Step 1: generate category of head child e Step 2: generate left modifiers in a Markov chain

S(told,V)
S(told,V)

Il 7 NP(Hillary,NNP) VP(told,V)

\
S(told,V) S(told,V)

|
VP(told,V)

P, (VP | S, told, V) NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

P,(VP| S told, V) x Py(NP(Hillary,NNP) | SVPtold,V,LEFT)x
Py(NP(yesterday,NN) | S,VPtold,V,LEFT)

40

Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V)

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)
N3
S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

P,(VP| S told, V) x P;(NP(Hillary,NNP) | SVPtold,V,LEFT)x
P, (NP(yesterday,NN) | S\VPtold,V,LEFT) x P,(STOP | SVPtold,V,LEFT)

41

Modeling Rule Productions as Markov Processes

e Step 3: generate right modifiers in a Markov chain

S(told,V)

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)
.
S(told,V)

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V)

P,(VP| S told, V) x P;(NP(Hillary,NNP) | SVPtold,V,LEFT)x
Py (NP(yesterday,NN) | SVPtold,V,LEFT) x P,(STOP | SVPtold,V,LEFT) x
P4(STOP | SVPtold,V,RIGHT)

