
6.864 (Fall 2007)

Global Linear Models: Part III

1

Overview

• Recap: global linear models

• Dependency parsing

• GLMs for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)

2

Three Components of Global Linear Models

• f is a function that maps a structure (x, y) to a feature vector
f(x, y) ∈ R

d

• GEN is a function that maps an input x to a set of candidates
GEN(x)

• w is a parameter vector (also a member of R
d)

• Training data is used to set the value of w

3

Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X → Y

• GEN, f , w define

F (x) = arg max
y∈GEN(x)

f(x, y) ·w

Choose the highest scoring candidate as the most plausible
structure

• Given examples (xi, yi), how to set w?

4

She announced a program to promote safety in trucks and vans

⇓ GEN

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

⇓ f ⇓ f ⇓ f ⇓ f ⇓ f ⇓ f

〈1, 1, 3, 5〉 〈2, 0, 0, 5〉 〈1, 0, 1, 5〉 〈0, 0, 3, 0〉 〈0, 1, 0, 5〉 〈0, 0, 1, 5〉

⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w ⇓ f · w

13.6 12.2 12.1 3.3 9.4 11.1

⇓ arg max
S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

5

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) ·w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi)− f(xi, zi)

Output: Parameters w

6

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t−2 t−1 w[1:n] i t

* * 〈Hispaniola, quickly, . . . , 〉 1 NNP
* NNP 〈Hispaniola, quickly, . . . , 〉 2 RB
NNP RB 〈Hispaniola, quickly, . . . , 〉 3 VB
RB VB 〈Hispaniola, quickly, . . . , 〉 4 DT
VP DT 〈Hispaniola, quickly, . . . , 〉 5 JJ
DT JJ 〈Hispaniola, quickly, . . . , 〉 6 NN

Define global features through local features:

f(t[1:n], w[1:n]) =
n

∑

i=1

g(hi, ti)

where ti is the i’th tag, hi is the i’th history

7

Global and Local Features

• Typically, local features are indicator functions, e.g.,

g101(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

• and global features are then counts,

f 101(w[1:n], t[1:n]) = Number of times a word ending in ing is
tagged as VBG in (w[1:n], t[1:n])

8

Putting it all Together

• GEN(w[1:n]) is the set of all tagged sequences of length n

• GEN, f , w define

F (w[1:n]) = arg max
t[1:n]∈GEN(w[1:n])

w · f(w[1:n], t[1:n])

= arg max
t[1:n]∈GEN(w[1:n])

w ·
n

∑

i=1

g(hi, ti)

= arg max
t[1:n]∈GEN(w[1:n])

n
∑

i=1

w · g(hi, ti)

• Some notes:

– Score for a tagged sequence is a sum of local scores

– Dynamic programming can be used to find the argmax!
(because history only considers the previous two tags)

9

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) ·w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi)− f(xi, zi)

Output: Parameters w

10

Training a Tagger Using the Perceptron Algorithm

Inputs: Training set (wi
[1:ni]

, ti[1:ni]
) for i = 1 . . . n.

Initialization: w = 0

Algorithm: For t = 1 . . . T, i = 1 . . . n

z[1:ni] = arg max
u[1:ni]

∈T ni

w · f(wi
[1:ni]

, u[1:ni])

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm

If z[1:ni] 6= ti[1:ni]
then

w = w + f(wi
[1:ni]

, ti[1:ni]
)− f(wi

[1:ni]
, z[1:ni])

Output: Parameter vector w.

11

Overview

• Recap: global linear models

• Dependency parsing

• GLMs for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)

12

Unlabeled Dependency Parses

root John saw a movie

• root is a special root symbol

• Each dependency is a pair (h, m) where h is the index of a head word, m

is the index of a modifier word. In the figures, we represent a dependency
(h, m) by a directed edge from h to m.

• Dependencies in the above example are (0, 2), (2, 1), (2, 4), and (4, 3).
(We take 0 to be the root symbol.)

13

All Dependency Parses for John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

14

A More Complex Example

saw a movieJohnroot he liked todaythat

15

Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

• The dependency arcs form a directed tree, with the root
symbol at the root of the tree.

(Definition: A directed tree rooted at root is a tree, where for
every word w other than the root, there is a directed path from
root to w.)

• There are no “crossing dependencies”.

Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

16

Labeled Dependency Parses

• Similar to unlabeled structures, but each dependency is a triple (h, m, l)
where h is the index of a head word, m is the index of a modifier word,
and l is a label. In the figures, we represent a dependency (h, m, l) by a
directed edge from h to m with a label l.

• For most of this lecture we’ll stick to unlabeled dependency structures.

17

Extracting Dependency Parses from Treebanks

• There’s recently been a lot of interest in dependency parsing. For example,
the CoNLL 2006 conference had a “shared task” where 12 languages
were involved (Arabic, Chinese, Czech, Danish, Dutch, German, Japanese,
Portuguese, Slovene, Spanish, Swedish, Turkish). 19 different groups
developed dependency parsing systems. CoNLL 2007 had a similar shared
task. Google for “conll 2006 shared task” for more details. For a recent
PhD thesis on the topic, see Ryan McDonald, Discriminative Training
and Spanning Tree Algorithms for Dependency Parsing, University of
Pennsylvania.

• For some languages, e.g., Czech, there are “dependency banks” available
which contain training data in the form of sentences paired with
dependency structures

• For other languages, we have treebanks from which we can extract
dependency structures, using lexicalized grammars described earlier in the
course (see Parsing and Syntax 2)

18

S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,VBD)

V(told,VBD)

VBD

told

NP(Clinton,NNP)

NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

(told VBD TOP S SPECIAL)
(told VBD Hillary NNP S VP NP LEFT)
(told VBD Clinton NNP VP VBD NP RIGHT)
(told VBD that COMP VP VBD SBAR RIGHT)
(that COMP was Vt SBAR COMP S RIGHT)
(was Vt she PRP S VP NP LEFT)
(was Vt president NP VP Vt NP RIGHT)

19

S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,VBD)

V(told,VBD)

VBD

told

NP(Clinton,NNP)

NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

Unlabeled Dependencies:
(0,2) (for root→ told)
(2,1) (for told→ Hillary)
(2,3) (for told→ Clinton)
(2,4) (for told→ that)
(4,6) (for that→ was)
(6,5) (for was→ she)
(6,7) (for was→ president)

20

Efficiency of Dependency Parsing

• PCFG parsing is O(n3G3) where n is the length of the
sentence, G is the number of non-terminals in the grammar

• Lexicalized PCFG parsing is O(n5G3) where n is the length
of the sentence, G is the number of non-terminals in the
grammar. (With the algorithms we’ve seen—it is possible to
do a little better than this.)

• Unlabeled dependency parsing is O(n3). (See part 4 of these
slides for the algorithm.)

21

Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)

22

GLMs for Dependency parsing

• x is a sentence

• GEN(x) is set of all dependency structures for x

• f(x, y) is a feature vector for a sentence x paired with a
dependency parse y

23

GLMs for Dependency parsing

• To run the perceptron algorithm, we must be able to efficiently
calculate

arg max
y∈GEN(x)

w · f(x, y)

• Local feature vectors: define

f(x, y) =
∑

(h,m)∈y

g(x, h, m)

where g(x, h, m) maps a sentence x and a dependency (h, m)
to a local feature vector

• Can then efficiently calculate

arg max
y∈GEN(x)

w · f(x, y) = arg max
y∈GEN(x)

∑

(h,m)∈y

w · g(x, h, m)

24

Definition of Local Feature Vectors

• g(x, h, m) maps a sentence x and a dependency (h, m) to a
local feature vector

• Features from McDonald et al. (2005):

– Note: define wi to be the i’th word in the sentence, ti to be the part-
of-speech (POS) tag for the i’th word.

– Unigram features: Identity of wh. Identity of wm. Identity of th.
Identity of tm.

– Bigram features: Identity of the 4-tuple 〈wh, wm, th, tm〉. Identity of
sub-sets of this 4-tuple, e.g., identity of the pair 〈wh, wm〉.

– Contextual features: Identity of the 4-tuple 〈th, th+1, tm−1, tm〉.
Similar features which consider th−1 and tm+1, giving 4 possible
feature types.

– In-between features: Identity of triples 〈th, t, tm〉 for any tag t seen
between words h and m.

25

Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)

26

Eisner’s Algorithm for Dependency Parsing

• Runs in O(n3) time for a sentence of length n

• Algorithm is similar to the dynamic programming algorithm
for PCFGs, but represents constituents in a novel way

• The problem: find

arg max
y∈GEN(x)

∑

(h,m)∈y

S(h, m)

where x is a sentence, GEN(x) is the set of all dependency
trees for x, and S(h, m) is the score of dependency (h, m). In
our case,

S(h, m) = w · g(x, h, m)

27

Complete Constituents

• A complete consituent with direction→ for words ws . . . wt is
a set of dependencies D such that:

– Every word in ws+1 . . . wt is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– ws is the head of at least one dependency.

• Note: this means that the dependencies in D form a directed
tree that spans all words ws . . . wt, with ws at the root of the
tree.

28

Complete Constituents

• A complete consituent with direction← for words ws . . . wt is
a set of dependencies D such that:

– Every word in ws . . . wt−1 is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– wt is the head of at least one dependency.

• Note: this means that the dependencies in D form a directed
tree that spans all words ws . . . wt, with wt at the root of the
tree.

29

Incomplete Constituents

• An incomplete consituent with direction → for words
ws . . . wt is a set of dependencies D such that:

– Every word in ws+1 . . . wt is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– ws is the head of at least one dependency.

– A new condition: there is a dependency (s, t) in D.

• Note: any incomplete constituent is also a complete
constituent

30

Incomplete Constituents

• An incomplete consituent with direction ← for words
ws . . . wt is a set of dependencies D such that:

– Every word in ws . . . wt−1 is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– wt is the head of at least one dependency.

– A new condition: there is a dependency (t, s) in D.

• Note: any incomplete constituent is also a complete
constituent

31

The Dynamic Programming Table

• C[s][t][d][c] is the highest score for any constituent that:

– Spans words ws . . . wt

– Has direction d

(either→ or←)

– Has type c

(c = 0 for incomplete constituents, c = 1 for complete
constituents)

• Base case for the dynamic programming algorithm:

for s = 1 . . . n, C[s][s][→][1] = C[s][s][←][1] = 0.0

32

Intuition: Creating Incomplete Constituents

• We can form an incomplete constituent spanning words
ws . . . wt by combining two complete constituents.

33

Creating Incomplete Constituents

• First case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][←][0] = max
s≤r<t

(C[s][r][→][1] + C[r + 1][t][←][1] + S(t, s))

Intuition: combine two complete constituents to form an
incomplete constituent

• Second case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][→][0] = max
s≤r<t

(C[s][r][→][1] + C[r + 1][t][←][1] + S(s, t))

34

Intuition: Creating Complete Constituents

• We can form a complete constituent spanning words ws . . . wt

by combining an incomplete and a complete constituent.

35

Creating Complete Constituents

• First case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][←][1] = max
s≤r<t

(C[s][r][←][1] + C[r][t][←][0])

Intuition: combine one complete constituent, one incomplete
constituent, to form a complete constituent

• Second case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][→][1] = max
s<r≤t

(C[s][r][→][0] + C[r][t][→][1])

36

The Full Algorithm
Initialization:

for s = 0 . . . n, C[s][s][→][1] = C[s][s][←][1] = 0.0

for k = 1 . . . n + 1
for s = 0 . . . n

t = s + k

if t > n then break

% First: create incomplete items
C[s][t][←][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + S(t, s))
C[s][t][→][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + S(s, t))

% Second: create incomplete items
C[s][t][←][1] = maxs≤r<t (C[s][r][←][1] + C[r][t][←][0])
C[s][t][→][1] = maxs<r≤t (C[s][r][→][0] + C[r][t][→][1])

Return C[0][n][→][1] as the highest score for any parse

37

Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)

38

Results from McDonald (2005)

Method Accuracy
Collins (1997) 91.4%
1st order dependency 90.7%
2nd order dependency 91.5%

• Accuracy is percentage of correct unlabeled dependencies

• Collins (1997) is result from a lexicalized context-free parser, with
dependencies extracted from the parser’s output

• 1st order dependency is the method just described.
2nd order dependency is a model that uses richer representations.

• Advantages of the dependency parsing approaches: simplicity, efficiency
(O(n3) parsing time).

39

Extensions

• 2nd-order dependency parsing

• Non-projective dependency structures

saw a movie today that he likedJohn*

40

