
6.864 (Fall 2007)

Global Linear Models: Part III
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Overview

• Recap: global linear models

• Dependency parsing

• GLMs for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)
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Three Components of Global Linear Models

• f is a function that maps a structure (x, y) to a feature vector
f(x, y) ∈ R

d

• GEN is a function that maps an input x to a set of candidates
GEN(x)

• w is a parameter vector (also a member of R
d)

• Training data is used to set the value of w
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Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X → Y

• GEN, f , w define

F (x) = arg max
y∈GEN(x)

f(x, y) ·w

Choose the highest scoring candidate as the most plausible
structure

• Given examples (xi, yi), how to set w?
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A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) ·w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi)− f(xi, zi)

Output: Parameters w
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A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t−2 t−1 w[1:n] i t

* * 〈Hispaniola, quickly, . . . , 〉 1 NNP
* NNP 〈Hispaniola, quickly, . . . , 〉 2 RB
NNP RB 〈Hispaniola, quickly, . . . , 〉 3 VB
RB VB 〈Hispaniola, quickly, . . . , 〉 4 DT
VP DT 〈Hispaniola, quickly, . . . , 〉 5 JJ
DT JJ 〈Hispaniola, quickly, . . . , 〉 6 NN

Define global features through local features:

f(t[1:n], w[1:n]) =
n

∑

i=1

g(hi, ti)

where ti is the i’th tag, hi is the i’th history
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Global and Local Features

• Typically, local features are indicator functions, e.g.,

g101(h, t) =

{

1 if current word wi ends in ing and t = VBG
0 otherwise

• and global features are then counts,

f 101(w[1:n], t[1:n]) = Number of times a word ending in ing is
tagged as VBG in (w[1:n], t[1:n])
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Putting it all Together

• GEN(w[1:n]) is the set of all tagged sequences of length n

• GEN, f , w define

F (w[1:n]) = arg max
t[1:n]∈GEN(w[1:n])

w · f(w[1:n], t[1:n])

= arg max
t[1:n]∈GEN(w[1:n])

w ·
n

∑

i=1

g(hi, ti)

= arg max
t[1:n]∈GEN(w[1:n])

n
∑

i=1

w · g(hi, ti)

• Some notes:

– Score for a tagged sequence is a sum of local scores

– Dynamic programming can be used to find the argmax!
(because history only considers the previous two tags)

9

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: w = 0

Define: F (x) = argmaxy∈GEN(x) f(x, y) ·w

Algorithm: For t = 1 . . . T , i = 1 . . . n

zi = F (xi)
If (zi 6= yi) w = w + f(xi, yi)− f(xi, zi)

Output: Parameters w
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Training a Tagger Using the Perceptron Algorithm

Inputs: Training set (wi
[1:ni]

, ti[1:ni]
) for i = 1 . . . n.

Initialization: w = 0

Algorithm: For t = 1 . . . T, i = 1 . . . n

z[1:ni] = arg max
u[1:ni]

∈T ni

w · f(wi
[1:ni]

, u[1:ni])

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm

If z[1:ni] 6= ti[1:ni]
then

w = w + f(wi
[1:ni]

, ti[1:ni]
)− f(wi

[1:ni]
, z[1:ni])

Output: Parameter vector w.
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Overview

• Recap: global linear models

• Dependency parsing

• GLMs for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)
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Unlabeled Dependency Parses

root John saw a movie

• root is a special root symbol

• Each dependency is a pair (h, m) where h is the index of a head word, m

is the index of a modifier word. In the figures, we represent a dependency
(h, m) by a directed edge from h to m.

• Dependencies in the above example are (0, 2), (2, 1), (2, 4), and (4, 3).
(We take 0 to be the root symbol.)
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All Dependency Parses for John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary
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A More Complex Example

saw a movieJohnroot he liked todaythat
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Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

• The dependency arcs form a directed tree, with the root
symbol at the root of the tree.

(Definition: A directed tree rooted at root is a tree, where for
every word w other than the root, there is a directed path from
root to w.)

• There are no “crossing dependencies”.

Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.
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Labeled Dependency Parses

• Similar to unlabeled structures, but each dependency is a triple (h, m, l)
where h is the index of a head word, m is the index of a modifier word,
and l is a label. In the figures, we represent a dependency (h, m, l) by a
directed edge from h to m with a label l.

• For most of this lecture we’ll stick to unlabeled dependency structures.
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Extracting Dependency Parses from Treebanks

• There’s recently been a lot of interest in dependency parsing. For example,
the CoNLL 2006 conference had a “shared task” where 12 languages
were involved (Arabic, Chinese, Czech, Danish, Dutch, German, Japanese,
Portuguese, Slovene, Spanish, Swedish, Turkish). 19 different groups
developed dependency parsing systems. CoNLL 2007 had a similar shared
task. Google for “conll 2006 shared task” for more details. For a recent
PhD thesis on the topic, see Ryan McDonald, Discriminative Training
and Spanning Tree Algorithms for Dependency Parsing, University of
Pennsylvania.

• For some languages, e.g., Czech, there are “dependency banks” available
which contain training data in the form of sentences paired with
dependency structures

• For other languages, we have treebanks from which we can extract
dependency structures, using lexicalized grammars described earlier in the
course (see Parsing and Syntax 2)
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S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,VBD)

V(told,VBD)

VBD

told
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NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

( told VBD TOP S SPECIAL)
(told VBD Hillary NNP S VP NP LEFT)
(told VBD Clinton NNP VP VBD NP RIGHT)
(told VBD that COMP VP VBD SBAR RIGHT)
(that COMP was Vt SBAR COMP S RIGHT)
(was Vt she PRP S VP NP LEFT)
(was Vt president NP VP Vt NP RIGHT)
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S(told,V)

NP(Hillary,NNP)
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Unlabeled Dependencies:
(0,2) (for root→ told)
(2,1) (for told→ Hillary)
(2,3) (for told→ Clinton)
(2,4) (for told→ that)
(4,6) (for that→ was)
(6,5) (for was→ she)
(6,7) (for was→ president)
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Efficiency of Dependency Parsing

• PCFG parsing is O(n3G3) where n is the length of the
sentence, G is the number of non-terminals in the grammar

• Lexicalized PCFG parsing is O(n5G3) where n is the length
of the sentence, G is the number of non-terminals in the
grammar. (With the algorithms we’ve seen—it is possible to
do a little better than this.)

• Unlabeled dependency parsing is O(n3). (See part 4 of these
slides for the algorithm.)
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Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)
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GLMs for Dependency parsing

• x is a sentence

• GEN(x) is set of all dependency structures for x

• f(x, y) is a feature vector for a sentence x paired with a
dependency parse y
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GLMs for Dependency parsing

• To run the perceptron algorithm, we must be able to efficiently
calculate

arg max
y∈GEN(x)

w · f(x, y)

• Local feature vectors: define

f(x, y) =
∑

(h,m)∈y

g(x, h, m)

where g(x, h, m) maps a sentence x and a dependency (h, m)
to a local feature vector

• Can then efficiently calculate

arg max
y∈GEN(x)

w · f(x, y) = arg max
y∈GEN(x)

∑

(h,m)∈y

w · g(x, h, m)
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Definition of Local Feature Vectors

• g(x, h, m) maps a sentence x and a dependency (h, m) to a
local feature vector

• Features from McDonald et al. (2005):

– Note: define wi to be the i’th word in the sentence, ti to be the part-
of-speech (POS) tag for the i’th word.

– Unigram features: Identity of wh. Identity of wm. Identity of th.
Identity of tm.

– Bigram features: Identity of the 4-tuple 〈wh, wm, th, tm〉. Identity of
sub-sets of this 4-tuple, e.g., identity of the pair 〈wh, wm〉.

– Contextual features: Identity of the 4-tuple 〈th, th+1, tm−1, tm〉.
Similar features which consider th−1 and tm+1, giving 4 possible
feature types.

– In-between features: Identity of triples 〈th, t, tm〉 for any tag t seen
between words h and m.
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Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)
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Eisner’s Algorithm for Dependency Parsing

• Runs in O(n3) time for a sentence of length n

• Algorithm is similar to the dynamic programming algorithm
for PCFGs, but represents constituents in a novel way

• The problem: find

arg max
y∈GEN(x)

∑

(h,m)∈y

S(h, m)

where x is a sentence, GEN(x) is the set of all dependency
trees for x, and S(h, m) is the score of dependency (h, m). In
our case,

S(h, m) = w · g(x, h, m)
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Complete Constituents

• A complete consituent with direction→ for words ws . . . wt is
a set of dependencies D such that:

– Every word in ws+1 . . . wt is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– ws is the head of at least one dependency.

• Note: this means that the dependencies in D form a directed
tree that spans all words ws . . . wt, with ws at the root of the
tree.
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Complete Constituents

• A complete consituent with direction← for words ws . . . wt is
a set of dependencies D such that:

– Every word in ws . . . wt−1 is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– wt is the head of at least one dependency.

• Note: this means that the dependencies in D form a directed
tree that spans all words ws . . . wt, with wt at the root of the
tree.
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Incomplete Constituents

• An incomplete consituent with direction → for words
ws . . . wt is a set of dependencies D such that:

– Every word in ws+1 . . . wt is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– ws is the head of at least one dependency.

– A new condition: there is a dependency (s, t) in D.

• Note: any incomplete constituent is also a complete
constituent
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Incomplete Constituents

• An incomplete consituent with direction ← for words
ws . . . wt is a set of dependencies D such that:

– Every word in ws . . . wt−1 is a modifier to some word in
ws . . . wt.

– The dependencies in D form a well formed dependency
sub-parse: i.e., there are no crossing dependencies, or
cycles. No dependencies in D involve words other than
ws . . . wt.

– wt is the head of at least one dependency.

– A new condition: there is a dependency (t, s) in D.

• Note: any incomplete constituent is also a complete
constituent
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The Dynamic Programming Table

• C[s][t][d][c] is the highest score for any constituent that:

– Spans words ws . . . wt

– Has direction d

(either→ or←)

– Has type c

(c = 0 for incomplete constituents, c = 1 for complete
constituents)

• Base case for the dynamic programming algorithm:

for s = 1 . . . n, C[s][s][→][1] = C[s][s][←][1] = 0.0
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Intuition: Creating Incomplete Constituents

• We can form an incomplete constituent spanning words
ws . . . wt by combining two complete constituents.
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Creating Incomplete Constituents

• First case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][←][0] = max
s≤r<t

(C[s][r][→][1] + C[r + 1][t][←][1] + S(t, s))

Intuition: combine two complete constituents to form an
incomplete constituent

• Second case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][→][0] = max
s≤r<t

(C[s][r][→][1] + C[r + 1][t][←][1] + S(s, t))
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Intuition: Creating Complete Constituents

• We can form a complete constituent spanning words ws . . . wt

by combining an incomplete and a complete constituent.
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Creating Complete Constituents

• First case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][←][1] = max
s≤r<t

(C[s][r][←][1] + C[r][t][←][0])

Intuition: combine one complete constituent, one incomplete
constituent, to form a complete constituent

• Second case: for any s, t such that 1 ≤ s < t ≤ n,

C[s][t][→][1] = max
s<r≤t

(C[s][r][→][0] + C[r][t][→][1])
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The Full Algorithm
Initialization:

for s = 0 . . . n, C[s][s][→][1] = C[s][s][←][1] = 0.0

for k = 1 . . . n + 1
for s = 0 . . . n

t = s + k

if t > n then break

% First: create incomplete items
C[s][t][←][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + S(t, s))
C[s][t][→][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + S(s, t))

% Second: create incomplete items
C[s][t][←][1] = maxs≤r<t (C[s][r][←][1] + C[r][t][←][0])
C[s][t][→][1] = maxs<r≤t (C[s][r][→][0] + C[r][t][→][1])

Return C[0][n][→][1] as the highest score for any parse
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Overview

• Recap: global linear models

• Dependency parsing

• Global Linear Models (GLMs) for dependency parsing

• Eisner’s parsing algorithm

• Results from McDonald (2005)
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Results from McDonald (2005)

Method Accuracy
Collins (1997) 91.4%
1st order dependency 90.7%
2nd order dependency 91.5%

• Accuracy is percentage of correct unlabeled dependencies

• Collins (1997) is result from a lexicalized context-free parser, with
dependencies extracted from the parser’s output

• 1st order dependency is the method just described.
2nd order dependency is a model that uses richer representations.

• Advantages of the dependency parsing approaches: simplicity, efficiency
(O(n3) parsing time).
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Extensions

• 2nd-order dependency parsing

• Non-projective dependency structures

saw a movie today that he likedJohn*
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