Notes on the EM Algorithm
Michael Collins, September 24th 2005

1 Hidden Markov Models

A hidden Markov mode[N, ¥, ©) consists of the following elements:

e N is a positive integer specifying the number of states in the model. Without loss of generality, we
will take the N'th state to be a special state, tiirgal or stopstate.

e Y is a set of output symbols, for example= {a, b}

e O is avector of parameters. It contains three types of parameters:
— m; for j = 1... N is the probability of choosing stageas an initial state. Note th{tjjy:l T =
1.

—a;pforj=1...(N—1),k=1...N,Iis the probability of transitioning from stafeto state
k. Note that for allj, S ; a;x = 1.

— bj(o)forj =1...(N —1), ando € ¥, is the probability of emitting symbal from state;.
Note that for allj, > s b;(0) = 1.

Thus it can be seen thétis a vector ofN + (N — 1)N + (N — 1)|X| parameters.

An HMM specifies a probability for each possilgle y) pair, wherer is a sequence of symbols drawn from
¥, andy is a sequence of states drawn from the integers (V — 1). The sequencesandy are restricted
to have the same length. As an example, say we have an HMMMith 3, ¥ = {a, b}, and with some
choice of the parametef3. Takex = (a,a,b,b) andy = (1,2,2,1). Then in this case,

P(z,y|©) =m a12 a22 az1 a13 bi(a) ba(a) ba(b) by (D)

Thus we have a product of terms: the probability of starting in statel; the probabilitiesa; 2, a2,
az1 a1,3 specifying a series of transitions which terminate in the stop Staéad emission probabilities
b1(a),ba(a), ... specifying the probability of emitting each symbol from its associated state.

In general, if we have the sequenge= zi,z»,...z, Where eachr; € X, and the sequencg =
Y1, Y2, ... yn Where eachy; € 1... (N — 1), then

n n
P(z,y|©) = 7y, ay, N H Ay 1y, H by, (z;)
=2 j=1

Thus we see tha®(z, y|©) is a simple function of the parameteéds

2 The basic setting in EM

We assume the following set-up:

¢ We have some data points—a “sampletiz2, ... 2™. For example, each’ might be a sentence
such as “the dog slept”: this will be the case in EM applied to hidden Markov models (HMMs) or
probabilistic context-free-grammars (PCFGs). (Note that in this caseasédsha sequencewhich
we will sometimes writer}, z, . ..z, wheren; is the length of the sequence.) Or in the three coins
example (see the lecture notes), eacmight be a sequence of three coin tosses, suthi-igd THT,
orTTT.

¢ We have a parameter vector For example, see the description of HMMs in the previous section. As
another example, in a PCFG,would contain the probabilitf’(« — (|«) for every rule expansion
« — (in the context-free grammar within the PCFG.

e We have a modeP(z, y|©). This is essentially a function that for amyy, © triple returns a proba-
bility, which is the probability of seeing andy together. For example, see the description of HMMs
in the previous section. Note that this model defingsira distribution overr andy, but that we can
also derive anarginaldistribution overr alone, defined as

P(z]|©®) = ZP x,y|0)

Thus P(z|©) is derived by summing over all possibilities fgr In the case of HMMs, ifr is a
sequence of length, then we would sum over all state sequences of length
e Given the sample', 22, ... z™, we define thdikelihoodas

m

r©) = [[Pie) - [] X P’ vle)

i=1 =1y

and we define thiog-likelihoodas
L(©) =logL'(©) = > log P('|©) =Y "log» _ P(x',y|O)
=1 ; Y

e Themaximum-likelihood estimation problemto find

Onr = L(®

mr = argmax [(6)

wheref) is aparameter spacepecifying the set of allowable parameter settings. In the HMM exam-
ple, Q would enforce the restrictions that all parameter values wefe thatZé-V:1 m; = 1; that for

allj=1...(N—-1), Y8 a;x = 1;and thatforallj = 1... (N — 1), ¥,c5 bj(0) = 1.

To illustrate these definitions, say we would like to infer the parameters of an HMM from some data. For
the HMM we’ll assumeVN = 3, andX = {e, f, g, h}. These choices are fixed in the HMM. The parameter
vector,0, is the one thing we'll learn from data. Say we now observe the following “sample” of 4 sequences,
T1,L2,...T4.

e
e
f
f

Q T 3

Intuitively, a good setting for the parameters of the HMM would be:

m =1.0,m19=m3=0

bi(e) = b1(f) = 0.5,b1(g) = b1(h) =0
ba(e) = ba(f) = 0, b2(g) = ba(h) = 0.5
ai2 = 1.0, ap1 =a13 = 0

a3 = 1.0, az1 = a2 = 0

Under these definitions, the HMM always starts in stat@nd then transitions to sta2dollowed by state3,
the final state. Statehas a 50% chance of emitting eitheor f, while state2 has a 50% chance of emitting
eitherg or h. These parameter settings appear to fit the sample of 4 sequences quite well.

The log-likelihood function’.(©) in this case gives us a formal measure of how well a particular parameter
setting© fits the observed sample. Note thatO) is a function of both the paramete@s and the data

z', 22 ... 2% The higherL(©) is, the higher the probability assigned under the model to the observations
' 2%, ... 2% In fact, if we could efficiently search foB,;;, = argmax L(©), in this case this would

result in parameter settings such as the “intuitively” correct parameters shown above. Thus we now have
a well motivated way of setting the parameters in the model given some observed data, i.e., the maximum
likelihood estimates.

Note that this HMM example is a classic case of a situation with “hidden” or “latent” information. Each
sample point:? contains a sequence of symbols sucle ag, but doeshot contain an underlying sequence

of states, such ek 2. We can imagine that the data points =2, . . . have been created in a process where

in a first step an HMM is used to generate output sequences paired with underlying state sequences; but in
the second step the state sequences are discarded. In this sense the state sequences are “hidden” or “latent’
information.

3 Products of Multinomial (PM) Models

We now describe a class of modé?$z, y|O©) that is very important in NLP, and actually includes the three
coins example as well as HMMs and PCFGs. This class of modelprmdiscts of multinomial parameters
We will refer to them a$*M models In the next section we’ll describe the EM algorithm for this class of
model.

Recall thatin a PCFG, each sample pailig a sentence, and eaglis a possible parse tree for that sentence.
We have

n

P(z,y|®) = HP(Oéi — Bilay)

=1
assuming thatz,y) contains then context-free rulesy; — (; for i = 1...n. For example, if(z,y)
contains the ruleS — NP VP, NP — Jim, andVP — sleeps, then

P(z,y|®) = P(S — NP VP|S) x P(NP — Jim|NP) x P(VP — sleeps|VP)

Note thatP(x, y|©) is a product of parameters, where each parameter is a member of a different multinomial
distribution. In a PCFG, for each non-terminathere is a different multinomial distributioR(a — (]«)
for each non-terminal in the grammar.

HMMs define a model with a similar form. Recall the example in the section on HMMs, where we had the
following probability for a particulatz, y) pair:

P(z,y|©) =m a12 az2 az1 a13 bi(a) ba(a) ba(b) by (D)

Again, notice thatP?(x, y|©) is a product of parameters, where each parameter is a member of some multi-
nomial distribution.

In both HMMs and PCFGs, the model can be written in the following form

Pla.yle)= J[efemtesn W
r=1...|0|

Here:

e O, forr = 1...]|0] is ther’th parameter in the model. Each parameter is the member of some
multinomial distribution.

e Count(z,y,r) for r = 1...|0| is a count corresponding to how many tim@s is seen in the
expression folP(z, y|©).

We will refer to any model that can be written in the is form gg@duct of multinomial¢PM) model. This

class of model is important for a couple of reasons. First, it includes many models that we will come across
in NLP. Second, as we will see in the next section, the EM algorithm—a method for finding the maximum
likelihood estimate® ,—takes a relatively simple form for PM models.

4 The EM Algorithm for PM Models

Figure 1 shows the EM algorithm for PM models. It is an iterative algorithm; we will@fse denote the
parameter values at thigh iteration of the algorithm. In the initialization step, some choice for initial param-
eter setting®’ is made. The algorithm then defines an iterative sequence of parar®8tés, ..., 07,
before returningd” as the final parameter settings. In theory, it can be shown that as oo, ©7 will
converge to a point that is either a local maximum or saddle point of the log-likelihood fun£ti@r, In
practice, EM is often quite quick to converge, perhaps taking a handful of iterations.

Note that at each iteration of the algorithm, two steps are taken. In the firsesfgsted countS'ount(r)
are calculated for each paramegrin the model. It can be verified that at thth iteration,

Count(r) = Z Z P(y|zt, @ Count(z*,y,r)
i=1 y

For example, say we are estimating the parameters of a PCFG using the EM algorithm. Take a particular
rule, such as — NP V P. Then the expected count for this rule at thh iteration will be

Count(S — NP VP))=> "> P(yla',0" ")Count(z',y,S — NP VP)
=1 ¥

Note that we sum over all training examptes 1...m, and we sum over all parse trees for each sample
Count(z',y, S — NP V P)isthe number of times th& — NP V P is seen in treg for sentence’. The

factor P(y|z*, ©'~!) in the sum means that each parse fréer 2* makes a contribution aP(y|x?, ©¢~1) x
Count(z,y, S — NP VP) to the expected count.

In the second step, we calculate the updated param@tefEhese are calculated as simple functions of the
expected counts. For example, we would re-estimate
Count(S — NP VP)
ZS—%ERW(S — B)
Note that the denominator in this term involves a summation over all rules of the Sorm 3 in the

grammar. This term ensures thal_ 5.z P(S — 8|S) = 1, the usual constraint on rule probabilities in
PCFGs.

P(S — NPVP|S) =

As another example, consider the EM algorithm applied to HMMs. Recall that there are three types of
parameters in an HMM: initial state parameters suctasransition parameters such@s,; and emission
parameters such &s(e). Each of these parameters will have an associated expected count under the model.
For example, defin€ount(x?,y,1 — 2) to be the number of times a transition from stat® state2 is

seen iny, and define”ount(1 — 2) to be the expected count in the training set of this transition, assuming
the parameterg’~! at thet'th iteration. Then the following quantity will be calculated in the first step of

the algorithm:

m
Count(1 — 2) = Z ZP(ylmi, o HCount(zt, y,1 — 2)
=1 vy
Moreover, in the second step the transition parametemwill be re-estimated as

_ Count(l — 2)
- N Count(1 — k)

ai,2

where in this case the denominator ensures¥pat; a; ; = 1. Similar calculations will be performed for
other transition parameters, as well as the initial state parameters and emission parameters.

5 The Forward-Backward Algorithm for HMMs

5.1 Background

There is clearly a major problem for the algorithm in figure 1, at least when applied to HMMs (or PCFGSs).
For each training example, the algorithm requires a “brute force” summation over all possible values for
y. For example, with an HMM wher& = 3, and an input sequence of lengihwe need to sum over

all possible state sequences of lengthThere are2™ possible state sequences in this case, an intractable
number as: grows large.

Fortunately, there is a way of avoiding this brute force strategy with HMMs, using a dynamic programming
algorithm calledthe forward-backward algorithm Say that we could efficiently calculate the following
quantities for any: of lengthn, foranyj € 1...n,andforanp € 1...(N —1)andge 1...N:

Ply; =pyj+1=dqz,0)= > P(ylz,0) ()
YYi=nYj+1=q

This is the conditional probability of being in stait timej, and at state at time(j + 1), given an input
x and some parameter settings It involves a summation over all possible state sequencesywita p

Inputs: A sample ofin points,z!, 22, ..., 2™. Amodel P(z, y|©) which takes the following form:

P(x,y|@) — H @TCount(ac,y,r)
r=1...|0|

Goal: To find the maximum-likelihood estimates,
m .
O = argmax L(©) = argmax » lo P(z',y|©
wr = argmax L(6) g@;g;(yl)

Initialization: Choose some initial value for the parameters, call @fis

Algorithm; Fort=1...T,

e Forr=1...|0|, setCount(r) =0

e Fori=1...m,

For ally, calculatet, = P(z%,y|©' 1)
Setsum =}, t,
For ally, setu, = t,/sum (note thatu,, = P(y|z',0!" 1))

Forallr =1...]0], set

Count(r) = Count(r) + ZuyCount(J?i, Y, 1)
y

e Forallr=1...|0|, set

¢ Count(r)
" Z
whereZ is a normalization constant that ensures that the multinomial distribution of v
©! is a member sums to 1.

S)

Output: Return parameter valugs”

vhich

Figure 1: The EM Algorithm for PM Models

andy;;+1 = ¢. Say we could also efficiently compute the following quantity for argf lengthn, and any
je€l...nandpel... (N —1):

P(y; =plz,©) = > P(ylz,0) ©)

YY;=p
This is the probability of being in stageat timej, given some input and parameter setting.

Recall that in the EM algorithm, in order to re-estimate transition parameters, we needed to calculate ex-
pected counts defined as the following forang 1...N —landge 1...N

Count(p —q) = Y. P(ylz',0" ") Count(a',y,p — q)
=1 Yy

The inner sum can now be re-written using terms such as that in Eq. 2, as

n;
> P(yla’, 0 ") Count(z',y,p — q) = Y P(y; = p,yjs1 = qlz, 0")
Yy 7=1

Similarly, suppose we need to calculate estimated counts corresponding to initial state parameters. We will
write s; = p to denote the initial state being stateThen we need to calculate

m
Count(s; =p) = Z ZP(y\xi, 0" Y Count(z',y, 51 = p)
i=1 y
foranyp € 1... N. In this case the inner sum can be re-written in terms of the formula in Eq. 3, as

3" P(yla’, 07" Count(z',y, s1 = p) = P(y1 = pla’, ')
)

Finally, suppose we need to calculate estimated counts corresponding to emission parameters. We will write
p T o to denote statg emitting the symbob. Then we need to calculate

Count(p o) = Y > Plyla',0") Count(z',y,p 1 o)
=1y

foranyp € 1...(N — 1). In this case the inner sum can be re-written in terms of the formula in Eq. 3, as

> P(yla’, 0 ") Count(z',y,p T o) = Y P(y; =pla’,0"")

Y Jjizj=o

In summary, if we can calculate the quantities in Equations 2 and 3, then we can calculate all expected
counts required in the EM algorithm for HMMs.

5.2 The Algorithm

We will now describe how to calculate the quantities in Eq. 2 and Eqg. 3 using the forward—backward algo-
rithm.

Given an input sequenesg . . . z,,, we will define theforward probabilitiesas being

ap(j) = Plxi...xzj_1,y;=p|0)

forallj € 1...n,forallp € 1...N — 1. The forward probabilityr,(j) is then the probability of the
HMM emitting the output symbols; ... xz;_;, and then ending up in state Note that this term involves a
summation over all possible state sequences underhying. z;_1.

Given an input sequencs ... x,, we will define thebackward probabilitiess being

Bp(j) = P(zj...xn|y; =p,0)

forallj€1...n,forallpc1... N —1. Thisis the probability of emitting symbols; . . . z,,, then ending
up in the final state, given that we begin in state

The forward and backward probabilities can be calculated efficiently using the recursive definitions in fig-
ure 2. We will give more justification for these definitions in the next section.

Given the forward and backward probabilities, the first thing we can calculate is the following:

7 = P(ZEl,ZL‘Q, .. l’n‘('“)) = Zap(])ﬁp(])

foranyj € 1...n. Thus we can calculate the probability of the sequence, . .. z,, being emitted by
the HMM.

We can also calculate the probability of statenderlying observation;, one of the quantities introduced
in the previous section:
ap(7)Bp(J)

Ply; = ple,) = 2L

for anyp, j. Finally, we can calculate the probability of each possible state transition, as follows:

_ () ap,qbp(05)Bq(j + 1)
A

P(y; = p,yj+1 = q|z,0)

foranyp,q,j.

5.3 Justification for the Algorithm

To understand the recursive definitions for the forward and backward probabilities, we will make use of
a particular directed graph. The graph is associated with a particular input sequensge. .. z,,, and
parameter vectap, and has the following vertices:

e A ‘“source” vertex, which we will labes.

e A“final” vertex, which we will labelf.

e Foralljel...n,forallpel...N —1, thereis an associated vertex which we will labg).

Given this set of vertices, we define the following directed edges between pairs of vertices (note that each
edge has a an associated weight, or probability):

e There is an edge fromto each verteX1, p) forp =1... N — 1. Each such edge has a weight equal
to .

e Foranyje1...n—1,andp,q € 1... N—1, thereis an edge from vertgx p) to vertex((j+1), q).
This edge has weight equaldg , b,(x;).

e There is an edge from each vertex p) forp = 1... N — 1 to the final vertexf. Each such edge has
a weight equal ta,, n b,(xy)

The resulting graph has a large number of paths from the seuecthe final state’; each path goes through
a number of intermediate vertices. The weight of an entire path will be taken as the product of weights on
the edges in the path. You should be able to convince yourself that:

1. For every state sequenge o, . . . y, in the original HMM, there is a path through with graph that
has the sequence of states1, y1),..., (n,yn), f

2. The path associated with state sequefices, . . . y, has weight equal t&(x, y|©)
We can now interpret the forward and backward probabilities as following:

e a,(j) is the sum of weights of all paths frosto the stat€j, p)

e (,(j) is the sum of weights of all paths from stdtep) to the final statef

If you construct this graph, you should be able to convince yourself that the recursive definitions for the
forward and backward probabilities are correct.

e Given an input sequencag ...x,,foranype1...N,je€l...n

ap(j) = P(x1...xj1,y; =p|0O) forward probabilities

e Base case:
ap(l) =m, forallp

Recursive case:

ap(j+1) = Zaq J)agpbg(z;) forallp=1...N—-1landj=1...n—1

Given an input sequencs ...z,

Bp(j) = P(zj...xn|y; =p,©) backward probabilities

Base case:

Bp(n) = ap nbp(z,) forallp=1...N -1

Recursive case:

Zapq (2j)B4(j+1) forallp=1...N—-1landj=1...n—1

Figure 2: Recursive definitions of the forward and backward probabilities

