
Notes on the EM Algorithm
Michael Collins, September 24th 2005

1 Hidden Markov Models

A hidden Markov model(N,Σ,Θ) consists of the following elements:

• N is a positive integer specifying the number of states in the model. Without loss of generality, we
will take theN ’th state to be a special state, thefinal or stopstate.

• Σ is a set of output symbols, for exampleΣ = {a, b}

• Θ is a vector of parameters. It contains three types of parameters:

– πj for j = 1 . . . N is the probability of choosing statej as an initial state. Note that
∑N

j=1 πj =
1.

– aj,k for j = 1 . . . (N − 1), k = 1 . . . N , is the probability of transitioning from statej to state
k. Note that for allj,

∑N
k=1 aj,k = 1.

– bj(o) for j = 1 . . . (N − 1), ando ∈ Σ, is the probability of emitting symbolo from statej.
Note that for allj,

∑
o∈Σ bj(o) = 1.

Thus it can be seen thatΘ is a vector ofN + (N − 1)N + (N − 1)|Σ| parameters.

An HMM specifies a probability for each possible(x, y) pair, wherex is a sequence of symbols drawn from
Σ, andy is a sequence of states drawn from the integers1 . . . (N − 1). The sequencesx andy are restricted
to have the same length. As an example, say we have an HMM withN = 3, Σ = {a, b}, and with some
choice of the parametersΘ. Takex = 〈a, a, b, b〉 andy = 〈1, 2, 2, 1〉. Then in this case,

P (x, y|Θ) = π1 a1,2 a2,2 a2,1 a1,3 b1(a) b2(a) b2(b) b1(b)

Thus we have a product of terms: the probabilityπ1 of starting in state1; the probabilitiesa1,2, a2,2,
a2,1 a1,3 specifying a series of transitions which terminate in the stop state3; and emission probabilities
b1(a), b2(a), . . . specifying the probability of emitting each symbol from its associated state.

In general, if we have the sequencex = x1, x2, . . . xn where eachxj ∈ Σ, and the sequencey =
y1, y2, . . . yn where eachyj ∈ 1 . . . (N − 1), then

P (x, y|Θ) = πy1ayn,N

n∏
j=2

ayj−1,yj

n∏
j=1

byj (xj)

Thus we see thatP (x, y|Θ) is a simple function of the parametersΘ.

2 The basic setting in EM

We assume the following set-up:

• We have some data points—a “sample”—x1, x2, . . . xm. For example, eachxi might be a sentence
such as “the dog slept”: this will be the case in EM applied to hidden Markov models (HMMs) or
probabilistic context-free-grammars (PCFGs). (Note that in this case eachxi is a sequence, which
we will sometimes writexi

1, x
i
2, . . . x

i
ni

whereni is the length of the sequence.) Or in the three coins
example (see the lecture notes), eachxi might be a sequence of three coin tosses, such asHHH, THT,
or TTT.

• We have a parameter vectorΘ. For example, see the description of HMMs in the previous section. As
another example, in a PCFG,Θ would contain the probabilityP (α → β|α) for every rule expansion
α → β in the context-free grammar within the PCFG.

• We have a modelP (x, y|Θ). This is essentially a function that for anyx, y, Θ triple returns a proba-
bility, which is the probability of seeingx andy together. For example, see the description of HMMs
in the previous section. Note that this model defines ajoint distribution overx andy, but that we can
also derive amarginaldistribution overx alone, defined as

P (x|Θ) =
∑
y

P (x, y|Θ)

ThusP (x|Θ) is derived by summing over all possibilities fory. In the case of HMMs, ifx is a
sequence of lengthn, then we would sum over all state sequences of lengthn.

• Given the samplex1, x2, . . . xm, we define thelikelihoodas

L′(Θ) =
m∏

i=1

P (xi|Θ) =
m∏

i=1

∑
y

P (xi, y|Θ)

and we define thelog-likelihoodas

L(Θ) = log L′(Θ) =
m∑

i=1

log P (xi|Θ) =
m∑

i=1

log
∑
y

P (xi, y|Θ)

• Themaximum-likelihood estimation problemis to find

ΘML = arg max
Θ∈Ω

L(Θ)

whereΩ is aparameter spacespecifying the set of allowable parameter settings. In the HMM exam-
ple,Ω would enforce the restrictions that all parameter values were≥ 0; that

∑N
j=1 πj = 1; that for

all j = 1 . . . (N − 1),
∑N

k=1 aj,k = 1; and that for allj = 1 . . . (N − 1),
∑

o∈Σ bj(o) = 1.

To illustrate these definitions, say we would like to infer the parameters of an HMM from some data. For
the HMM we’ll assumeN = 3, andΣ = {e, f, g, h}. These choices are fixed in the HMM. The parameter
vector,Θ, is the one thing we’ll learn from data. Say we now observe the following “sample” of 4 sequences,
x1, x2, . . . x4:

e g
e h
f h
f g

Intuitively, a good setting for the parameters of the HMM would be:

π1 = 1.0, π2 = π3 = 0
b1(e) = b1(f) = 0.5, b1(g) = b1(h) = 0
b2(e) = b2(f) = 0, b2(g) = b2(h) = 0.5
a1,2 = 1.0, a1,1 = a1,3 = 0
a2,3 = 1.0, a2,1 = a2,2 = 0

Under these definitions, the HMM always starts in state1, and then transitions to state2 followed by state3,
the final state. State1 has a 50% chance of emitting eithere or f , while state2 has a 50% chance of emitting
eitherg or h. These parameter settings appear to fit the sample of 4 sequences quite well.

The log-likelihood functionL(Θ) in this case gives us a formal measure of how well a particular parameter
settingΘ fits the observed sample. Note thatL(Θ) is a function of both the parametersΘ and the data
x1, x2, . . . x4. The higherL(Θ) is, the higher the probability assigned under the model to the observations
x1, x2, . . . x4. In fact, if we could efficiently search forΘML = arg maxL(Θ), in this case this would
result in parameter settings such as the “intuitively” correct parameters shown above. Thus we now have
a well motivated way of setting the parameters in the model given some observed data, i.e., the maximum
likelihood estimates.

Note that this HMM example is a classic case of a situation with “hidden” or “latent” information. Each
sample pointxi contains a sequence of symbols such ase g , but doesnot contain an underlying sequence
of states, such as1 2 . We can imagine that the data pointsx1, x2, . . . have been created in a process where
in a first step an HMM is used to generate output sequences paired with underlying state sequences; but in
the second step the state sequences are discarded. In this sense the state sequences are “hidden” or “latent”
information.

3 Products of Multinomial (PM) Models

We now describe a class of modelsP (x, y|Θ) that is very important in NLP, and actually includes the three
coins example as well as HMMs and PCFGs. This class of models usesproducts of multinomial parameters.
We will refer to them asPM models. In the next section we’ll describe the EM algorithm for this class of
model.

Recall that in a PCFG, each sample pointx is a sentence, and eachy is a possible parse tree for that sentence.
We have

P (x, y|Θ) =
n∏

i=1

P (αi → βi|αi)

assuming that(x, y) contains then context-free rulesαi → βi for i = 1 . . . n. For example, if(x, y)
contains the rulesS→ NP VP, NP→ Jim, andVP→ sleeps, then

P (x, y|Θ) = P (S→ NP VP|S)× P (NP→ Jim|NP)× P (VP→ sleeps|VP)

Note thatP (x, y|Θ) is a product of parameters, where each parameter is a member of a different multinomial
distribution. In a PCFG, for each non-terminalα there is a different multinomial distributionP (α → β|α)
for each non-terminalα in the grammar.

HMMs define a model with a similar form. Recall the example in the section on HMMs, where we had the
following probability for a particular(x, y) pair:

P (x, y|Θ) = π1 a1,2 a2,2 a2,1 a1,3 b1(a) b2(a) b2(b) b1(b)

Again, notice thatP (x, y|Θ) is a product of parameters, where each parameter is a member of some multi-
nomial distribution.

In both HMMs and PCFGs, the model can be written in the following form

P (x, y|Θ) =
∏

r=1...|Θ|
ΘCount(x,y,r)

r (1)

Here:

• Θr for r = 1 . . . |Θ| is the r’th parameter in the model. Each parameter is the member of some
multinomial distribution.

• Count(x, y, r) for r = 1 . . . |Θ| is a count corresponding to how many timesΘr is seen in the
expression forP (x, y|Θ).

We will refer to any model that can be written in the is form as aproduct of multinomials(PM) model. This
class of model is important for a couple of reasons. First, it includes many models that we will come across
in NLP. Second, as we will see in the next section, the EM algorithm—a method for finding the maximum
likelihood estimatesΘML—takes a relatively simple form for PM models.

4 The EM Algorithm for PM Models

Figure 1 shows the EM algorithm for PM models. It is an iterative algorithm; we will useΘt to denote the
parameter values at thet’th iteration of the algorithm. In the initialization step, some choice for initial param-
eter settingsΘ0 is made. The algorithm then defines an iterative sequence of parametersΘ0,Θ1, . . . ,ΘT ,
before returningΘT as the final parameter settings. In theory, it can be shown that asT → ∞, ΘT will
converge to a point that is either a local maximum or saddle point of the log-likelihood function,L(Θ). In
practice, EM is often quite quick to converge, perhaps taking a handful of iterations.

Note that at each iteration of the algorithm, two steps are taken. In the first step,expected countsCount(r)
are calculated for each parameterΘr in the model. It can be verified that at thet’th iteration,

Count(r) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, r)

For example, say we are estimating the parameters of a PCFG using the EM algorithm. Take a particular
rule, such asS → NP V P . Then the expected count for this rule at thet’th iteration will be

Count(S → NP V P)) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, S → NP V P)

Note that we sum over all training examplesi = 1 . . .m, and we sum over all parse trees for each samplexi.
Count(xi, y, S → NP V P) is the number of times thatS → NP V P is seen in treey for sentencexi. The

factorP (y|xi,Θt−1) in the sum means that each parse treey for xi makes a contribution ofP (y|xi,Θt−1)×
Count(xi, y, S → NP V P) to the expected count.

In the second step, we calculate the updated parametersΘt. These are calculated as simple functions of the
expected counts. For example, we would re-estimate

P (S → NP V P |S) =
Count(S → NP V P)∑
S→β∈R Count(S → β)

Note that the denominator in this term involves a summation over all rules of the formS → β in the
grammar. This term ensures that

∑
S→β∈R P (S → β|S) = 1, the usual constraint on rule probabilities in

PCFGs.

As another example, consider the EM algorithm applied to HMMs. Recall that there are three types of
parameters in an HMM: initial state parameters such asπ1; transition parameters such asa1,2; and emission
parameters such asb1(e). Each of these parameters will have an associated expected count under the model.
For example, defineCount(xi, y, 1 → 2) to be the number of times a transition from state1 to state2 is
seen iny, and defineCount(1 → 2) to be the expected count in the training set of this transition, assuming
the parametersθt−1 at thet’th iteration. Then the following quantity will be calculated in the first step of
the algorithm:

Count(1 → 2) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, 1 → 2)

Moreover, in the second step the transition parametera1,2 will be re-estimated as

a1,2 =
Count(1 → 2)∑N

k=1 Count(1 → k)

where in this case the denominator ensures that
∑N

k=1 a1,k = 1. Similar calculations will be performed for
other transition parameters, as well as the initial state parameters and emission parameters.

5 The Forward-Backward Algorithm for HMMs

5.1 Background

There is clearly a major problem for the algorithm in figure 1, at least when applied to HMMs (or PCFGs).
For each training examplexi, the algorithm requires a “brute force” summation over all possible values for
y. For example, with an HMM whereN = 3, and an input sequence of lengthn, we need to sum over
all possible state sequences of lengthn. There are2n possible state sequences in this case, an intractable
number asn grows large.

Fortunately, there is a way of avoiding this brute force strategy with HMMs, using a dynamic programming
algorithm calledthe forward-backward algorithm. Say that we could efficiently calculate the following
quantities for anyx of lengthn, for anyj ∈ 1 . . . n, and for anyp ∈ 1 . . . (N − 1) andq ∈ 1 . . . N :

P (yj = p, yj+1 = q|x,Θ) =
∑

y:yj=p,yj+1=q

P (y|x, Θ) (2)

This is the conditional probability of being in statep at timej, and at stateq at time(j + 1), given an input
x and some parameter settingsΘ. It involves a summation over all possible state sequences withyj = p

Inputs: A sample ofm points,x1, x2, . . . , xm. A modelP (x, y|Θ) which takes the following form:

P (x, y|Θ) =
∏

r=1...|Θ|
ΘCount(x,y,r)

r

Goal: To find the maximum-likelihood estimates,

ΘML = arg max
Θ

L(Θ) = arg max
Θ

m∑
i=1

log
∑
y

P (xi, y|Θ)

Initialization: Choose some initial value for the parameters, call thisΘ0.

Algorithm: For t = 1 . . . T ,

• For r = 1 . . . |Θ|, setCount(r) = 0

• For i = 1 . . .m,

– For ally, calculatety = P (xi, y|Θt−1)

– Setsum =
∑

y ty

– For ally, setuy = ty/sum (note thatuy = P (y|xi,Θt−1))

– For all r = 1 . . . |Θ|, set

Count(r) = Count(r) +
∑
y

uyCount(xi, y, r)

• For all r = 1 . . . |Θ|, set

Θt
r =

Count(r)
Z

whereZ is a normalization constant that ensures that the multinomial distribution of which
Θt

r is a member sums to 1.

Output: Return parameter valuesΘT

Figure 1: The EM Algorithm for PM Models

andyj+1 = q. Say we could also efficiently compute the following quantity for anyx of lengthn, and any
j ∈ 1 . . . n andp ∈ 1 . . . (N − 1):

P (yj = p|x,Θ) =
∑

y:yj=p

P (y|x, Θ) (3)

This is the probability of being in statep at timej, given some inputx and parameter settingsΘ.

Recall that in the EM algorithm, in order to re-estimate transition parameters, we needed to calculate ex-
pected counts defined as the following for anyp ∈ 1 . . . N − 1 andq ∈ 1 . . . N

Count(p → q) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, p → q)

The inner sum can now be re-written using terms such as that in Eq. 2, as

∑
y

P (y|xi,Θt−1)Count(xi, y, p → q) =
ni∑

j=1

P (yj = p, yj+1 = q|x,Θt−1)

Similarly, suppose we need to calculate estimated counts corresponding to initial state parameters. We will
write s1 = p to denote the initial state being statep. Then we need to calculate

Count(s1 = p) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, s1 = p)

for anyp ∈ 1 . . . N . In this case the inner sum can be re-written in terms of the formula in Eq. 3, as∑
y

P (y|xi,Θt−1)Count(xi, y, s1 = p) = P (y1 = p|xi,Θt−1)

Finally, suppose we need to calculate estimated counts corresponding to emission parameters. We will write
p ↑ o to denote statep emitting the symbolo. Then we need to calculate

Count(p ↑ o) =
m∑

i=1

∑
y

P (y|xi,Θt−1)Count(xi, y, p ↑ o)

for anyp ∈ 1 . . . (N − 1). In this case the inner sum can be re-written in terms of the formula in Eq. 3, as∑
y

P (y|xi,Θt−1)Count(xi, y, p ↑ o) =
∑

j:xj=o

P (yj = p|xi,Θt−1)

In summary, if we can calculate the quantities in Equations 2 and 3, then we can calculate all expected
counts required in the EM algorithm for HMMs.

5.2 The Algorithm

We will now describe how to calculate the quantities in Eq. 2 and Eq. 3 using the forward–backward algo-
rithm.

Given an input sequencex1 . . . xn, we will define theforward probabilitiesas being

αp(j) = P (x1 . . . xj−1, yj = p | Θ)

for all j ∈ 1 . . . n, for all p ∈ 1 . . . N − 1. The forward probabilityαp(j) is then the probability of the
HMM emitting the output symbolsx1 . . . xj−1, and then ending up in statep. Note that this term involves a
summation over all possible state sequences underlyingx1 . . . xj−1.

Given an input sequencex1 . . . xn, we will define thebackward probabilitiesas being

βp(j) = P (xj . . . xn | yj = p, Θ)

for all j ∈ 1 . . . n, for all p ∈ 1 . . . N − 1. This is the probability of emitting symbolsxj . . . xn, then ending
up in the final state, given that we begin in statep.

The forward and backward probabilities can be calculated efficiently using the recursive definitions in fig-
ure 2. We will give more justification for these definitions in the next section.

Given the forward and backward probabilities, the first thing we can calculate is the following:

Z = P (x1, x2, . . . xn|Θ) =
∑
p

αp(j)βp(j)

for any j ∈ 1 . . . n. Thus we can calculate the probability of the sequencex1, x2, . . . xn being emitted by
the HMM.

We can also calculate the probability of statep underlying observationxj , one of the quantities introduced
in the previous section:

P (yj = p|x, Θ) =
αp(j)βp(j)

Z

for anyp, j. Finally, we can calculate the probability of each possible state transition, as follows:

P (yj = p, yj+1 = q|x,Θ) =
αp(j)ap,qbp(oj)βq(j + 1)

Z

for anyp, q, j.

5.3 Justification for the Algorithm

To understand the recursive definitions for the forward and backward probabilities, we will make use of
a particular directed graph. The graph is associated with a particular input sequencex1, x2, . . . xn, and
parameter vectorΘ, and has the following vertices:

• A “source” vertex, which we will labels.

• A “final” vertex, which we will labelf .

• For all j ∈ 1 . . . n, for all p ∈ 1 . . . N − 1, there is an associated vertex which we will label〈j, p〉.

Given this set of vertices, we define the following directed edges between pairs of vertices (note that each
edge has a an associated weight, or probability):

• There is an edge froms to each vertex〈1, p〉 for p = 1 . . . N − 1. Each such edge has a weight equal
to πp.

• For anyj ∈ 1 . . . n−1, andp, q ∈ 1 . . . N−1, there is an edge from vertex〈j, p〉 to vertex〈(j+1), q〉.
This edge has weight equal toap,q bp(xj).

• There is an edge from each vertex〈n, p〉 for p = 1 . . . N − 1 to the final vertexf . Each such edge has
a weight equal toap,N bp(xn)

The resulting graph has a large number of paths from the sources to the final statef ; each path goes through
a number of intermediate vertices. The weight of an entire path will be taken as the product of weights on
the edges in the path. You should be able to convince yourself that:

1. For every state sequencey1, y2, . . . yn in the original HMM, there is a path through with graph that
has the sequence of statess, 〈1, y1〉, . . . , 〈n, yn〉, f

2. The path associated with state sequencey1, y2, . . . yn has weight equal toP (x, y|Θ)

We can now interpret the forward and backward probabilities as following:

• αp(j) is the sum of weights of all paths froms to the state〈j, p〉

• βp(j) is the sum of weights of all paths from state〈j, p〉 to the final statef

If you construct this graph, you should be able to convince yourself that the recursive definitions for the
forward and backward probabilities are correct.

• Given an input sequencex1 . . . xn, for anyp ∈ 1 . . . N , j ∈ 1 . . . n,

αp(j) = P (x1 . . . xj−1, yj = p | Θ) forward probabilities

• Base case:
αp(1) = πp for all p

• Recursive case:

αp(j + 1) =
∑
q

αq(j)aq,pbq(xj) for all p = 1 . . . N − 1 andj = 1 . . . n− 1

• Given an input sequencex1 . . . xn:

βp(j) = P (xj . . . xn | yj = p, Θ) backward probabilities

• Base case:
βp(n) = ap,Nbp(xn) for all p = 1 . . . N − 1

• Recursive case:

βp(j) =
∑
q

ap,qbp(xj)βq(j + 1) for all p = 1 . . . N − 1 andj = 1 . . . n− 1

Figure 2: Recursive definitions of the forward and backward probabilities

