6.864 (Fall 07)
The EM Algorithm Part II

Overview

- Hidden Markov models
- The EM algorithm in general form
- Products of multinomial (PM) models
- The EM algorithm for PM models
- The EM algorithm for hidden markov models (dynamic programming)

The Structure of Hidden Markov Models

- Have N states, states 1...N
- Without loss of generality, take N to be the final or stop state
- Have an alphabet Σ. For example $\Sigma = \{a, b\}$
- Parameter π_i for $i = 1...N$ is probability of starting in state i
- Parameter $a_{i,j}$ for $i = 1...(N-1)$, and $j = 1...N$ is probability of state j following state i
- Parameter $b_i(o)$ for $i = 1...(N-1)$, and $o \in \Sigma$ is probability of state i emitting symbol o

An Example

- Take $N = 3$ states. States are $\{1, 2, 3\}$. Final state is state 3.
- Alphabet $\Sigma = \{\text{the, dog}\}$.
- Distribution over initial state is $\pi_1 = 1.0, \pi_2 = 0, \pi_3 = 0$.
- Parameters $a_{i,j}$ are

<table>
<thead>
<tr>
<th></th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Parameters $b_i(o)$ are

<table>
<thead>
<tr>
<th></th>
<th>$o=\text{the}$</th>
<th>$o=\text{dog}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>
A Generative Process

- Pick the start state s_1 to be state i for $i = 1 \ldots N$ with probability π_i.
- Set $t = 1$
- Repeat while current state s_t is not the stop state (N):
 - Emit a symbol $o_t \in \Sigma$ with probability $b_{s_t}(o_t)$
 - Pick the next state s_{t+1} as state j with probability $a_{s_t,j}$.
 - $t = t + 1$

Hidden Markov Models

- An HMM specifies a probability for each possible (x,y) pair, where x is a sequence of symbols drawn from Σ, and y is a sequence of states drawn from the integers $1 \ldots (N-1)$. The sequences x and y are restricted to have the same length.
- E.g., say we have an HMM with $N = 3$, $\Sigma = \{a, b\}$, and with some choice of the parameters Θ. Take $x = \langle a, a, b, b \rangle$ and $y = \langle 1, 2, 2, 1 \rangle$. Then in this case,

$$P(x, y|\Theta) = \pi_1 a_{1,2} a_{2,2} a_{1,3} b_1(a) b_2(a) b_2(b) b_1(b)$$

Probabilities Over Sequences

- An output sequence is a sequence of observations $o_1 \ldots o_T$ where each $o_t \in \Sigma$
 e.g. the dog the dog dog the
- A state sequence is a sequence of states $s_1 \ldots s_T$ where each $s_i \in \{1 \ldots N\}$
 e.g. 1 2 1 2 2 1
- HMM defines a probability for each state/output sequence pair
 e.g. the/1 dog/2 the/1 dog/2 the/2 dog/1 has probability
 $\pi_1 b_1(\text{the}) a_{1,2} b_2(\text{dog}) a_{2,1} b_1(\text{the}) a_{1,2} b_2(\text{dog}) a_{2,1} b_1(\text{dog}) a_{1,3}$

Hidden Markov Models

In general, if we have the sequence $x = x_1, x_2, \ldots x_n$ where each $x_j \in \Sigma$, and the sequence $y = y_1, y_2, \ldots y_n$ where each $y_j \in 1 \ldots (N-1)$, then

$$P(x, y|\Theta) = \pi_{y_1} a_{y_1,N} \prod_{j=2}^{n} a_{y_{j-1},y_j} \prod_{j=1}^{n} b_{y_j}(x_j)$$
A Hidden Variable Problem

- We have an HMM with $N = 3$, $\Sigma = \{e, f, g, h\}$
- We see the following output sequences in training data

 e g
 e h
 f h
 f g

- How would you choose the parameter values for π_i, $a_{i,j}$, and $b_i(o)$?

Another Hidden Variable Problem

- We have an HMM with $N = 3$, $\Sigma = \{e, f, g, h\}$
- We see the following output sequences in training data

 e g h
 e h
 f h g
 f g g
 e h

- How would you choose the parameter values for π_i, $a_{i,j}$, and $b_i(o)$?

Overview

- Hidden Markov models
- The EM algorithm in general form
- Products of multinomial (PM) models
- The EM algorithm for PM models
- The EM algorithm for hidden markov models (dynamic programming)

EM: the Basic Set-up

- We have some data points—a “sample”—x^1, x^2, \ldots, x^m.

- For example, each x^i might be a sentence such as “the dog slept”: this will be the case in EM applied to hidden Markov models (HMMs) or probabilistic context-free-grammars (PCFGs). (Note that in this case each x^i is a sequence, which we will sometimes write $x^i_1, x^i_2, \ldots, x^i_{n_i}$ where n_i is the length of the sequence.)

- Or in the three coins example (see the lecture notes), each x_i might be a sequence of three coin tosses, such as HHH, THT, or TTT.
• We have a parameter vector Θ. For example, see the description of HMMs in the previous section. As another example, in a PCFG, Θ would contain the probability $P(\alpha \rightarrow \beta | \alpha)$ for every rule expansion $\alpha \rightarrow \beta$ in the context-free grammar within the PCFG.

• Given the sample $x^1, x^2, \ldots x^m$, we define the likelihood as
 \[
 L'(\Theta) = \prod_{i=1}^{m} P(x^i | \Theta) = \prod_{i=1}^{m} \sum_{y} P(x^i, y | \Theta)
 \]

 and we define the log-likelihood as
 \[
 L(\Theta) = \log L'(\Theta) = \sum_{i=1}^{m} \log P(x^i | \Theta) = \sum_{i=1}^{m} \log \sum_{y} P(x^i, y | \Theta)
 \]

• We have a model $P(x, y | \Theta)$: A function that for any x, y, Θ triple returns a probability, which is the probability of seeing x and y together given parameter settings Θ.

• This model defines a joint distribution over x and y, but that we can also derive a marginal distribution over x alone, defined as
 \[
 P(x | \Theta) = \sum_{y} P(x, y | \Theta)
 \]

• The maximum-likelihood estimation problem is to find
 \[
 \Theta_{ML} = \arg \max_{\Theta \in \Omega} L(\Theta)
 \]

 where Ω is a parameter space specifying the set of allowable parameter settings. In the HMM example, Ω would enforce the restrictions $\sum_{j=1}^{N} \pi_j = 1$, for all $j = 1 \ldots (N-1)$, $\sum_{k=1}^{N} a_{j,k} = 1$, and for all $j = 1 \ldots (N-1)$, $\sum_{o \in \Sigma} b_j(o) = 1$.
The EM Algorithm

- Θ^t is the parameter vector at tth iteration
- Choose Θ^0 (at random, or using various heuristics)
- Iterative procedure is defined as
 \[\Theta^t = \arg\max_{\Theta} Q(\Theta, \Theta^{t-1}) \]
where
\[Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y \mid x_i, \Theta^{t-1}) \log P(x_i, y \mid \Theta) \]

Keypoints:
- Intuition: fill in hidden variables y according to $P(y \mid x_i, \Theta)$
- EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
- In general, if
 \[\arg\max_{\Theta} \sum_{i} \log P(x_i, y_i \mid \Theta) \]
has a simple (analytic) solution, then
 \[\arg\max_{\Theta} \sum_{i} \sum_{y} P(y \mid x_i, \Theta^{t-1}) \log P(x_i, y \mid \Theta) \]
also has a simple (analytic) solution.

Overview

- Hidden Markov models
- The EM algorithm in general form
- Products of multinomial (PM) models
- The EM algorithm for PM models
- The EM algorithm for hidden Markov models (dynamic programming)

Products of Multinomial (PM) Models

- In a PCFG, each sample point x is a sentence, and each y is a possible parse tree for that sentence. We have
 \[P(x, y \mid \Theta) = \prod_{i=1}^{n} P(\alpha_i \rightarrow \beta_i | \alpha_i) \]
assuming that (x, y) contains the n context-free rules $\alpha_i \rightarrow \beta_i$ for $i = 1 \ldots n$.
- For example, if (x, y) contains the rules $S \rightarrow NP \ VP$, $NP \rightarrow Jim$, and $VP \rightarrow sleeps$, then
 \[P(x, y \mid \Theta) = P(S \rightarrow NP \ VP | S) \times P(NP \rightarrow Jim | NP) \times P(VP \rightarrow sleeps | VP) \]
Products of Multinomial (PM) Models

- HMMs define a model with a similar form. Recall the example in the section on HMMs, where we had the following probability for a particular \((x, y)\) pair:

 \[
P(x, y|\Theta) = \pi_1 a_{1,2} a_{2,2} a_{1,3} b_1(a) b_2(a) b_2(b) b_1(b)
 \]

- In both HMMs and PCFGs, the model can be written in the following form

 \[
P(x, y|\Theta) = \prod_{r=1\ldots|\Theta|} \Theta_r^{\text{Count}(x, y, r)}
 \]

 Here:
 - \(\Theta_r\) for \(r = 1\ldots|\Theta|\) is the \(r\)'th parameter in the model
 - \(\text{Count}(x, y, r)\) for \(r = 1\ldots|\Theta|\) is a count corresponding to how many times \(\Theta_r\) is seen in the expression for \(P(x, y|\Theta)\).

- We will refer to any model that can be written in this form as a *product of multinomials* (PM) model.

The EM Algorithm for PM Models

- We will use \(\Theta^t\) to denote the parameter values at the \(t\)'th iteration of the algorithm.

- In the initialization step, some choice for initial parameter settings \(\Theta^0\) is made.

- The algorithm then defines an iterative sequence of parameters \(\Theta^0, \Theta^1, \ldots, \Theta^T\), before returning \(\Theta^T\) as the final parameter settings.

- Crucial detail: deriving \(\Theta^t\) from \(\Theta^{t-1}\)
The EM Algorithm for PM Models: Step 1

- At each iteration of the algorithm, two steps are taken.

- **Step 1:** expected counts $\overline{\text{Count}}(r)$ are calculated for each parameter Θ_r in the model.

$$
\overline{\text{Count}}(r) = \sum_{i=1}^{m} \sum_y P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, r)
$$

The EM Algorithm for PM Models: Step 2

- **Step 2:** Calculate the updated parameters Θ^t. For example, we would re-estimate

$$
P(S \rightarrow NP VP|S) = \frac{\overline{\text{Count}}(S \rightarrow NP VP)}{\sum_{S \rightarrow \beta \in R} \overline{\text{Count}}(S \rightarrow \beta)}
$$

Note that the denominator in this term involves a summation over all rules of the form $S \rightarrow \beta$ in the grammar. This term ensures that $\sum_{S \rightarrow \beta \in R} P(S \rightarrow \beta|S) = 1$, the usual constraint on rule probabilities in PCFGs.

The EM Algorithm for PM Models: Step 1

- For example, say we are estimating the parameters of a PCFG using the EM algorithm. Take a particular rule, such as $S \rightarrow NP VP$. Then at the t'th iteration,

$$
\overline{\text{Count}}(S \rightarrow NP VP) = \sum_{i=1}^{m} \sum_y P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, S \rightarrow NP VP)
$$

The EM Algorithm for HMMs: Step 1

- Define $\text{Count}(x^i, y, p \rightarrow q)$ to be the number of times a transition from state p to state q is seen in y.

- **Step 1:** Calculate expected counts such as

$$
\overline{\text{Count}}(1 \rightarrow 2) = \sum_{i=1}^{m} \sum_y P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2)
$$

- (Note: similar counts will be calculated for emission and initial-state parameters)
The EM Algorithm for HMMs: Step 2

- **Step 2:** Re-estimate transition parameter as

 \[a_{1,2} = \frac{\text{Count}(1 \rightarrow 2)}{\sum_{k=1}^{K} \text{Count}(1 \rightarrow k)} \]

 where in this case the denominator ensures that \(\sum_{k=1}^{N} a_{1,k} = 1 \).

- Similar calculations will be performed for other transition parameters, as well as the initial state parameters and emission parameters.

Overview

- Hidden Markov models
- The EM algorithm in general form
- Products of multinomial (PM) models
- The EM algorithm for PM models
- The EM algorithm for hidden markov models (dynamic programming)

The Forward-Backward Algorithm for HMMs

- Define \(\text{Count}(x^i, y, p \rightarrow q) \) to be the number of times a transition from state \(p \) to state \(q \) is seen in \(y \).

- **Step 1:** Calculate expected counts such as

 \[\overline{\text{Count}}(1 \rightarrow 2) = \sum_{i=1}^{m} \sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2) \]

- A problem: the inner sum

 \[\sum_{y} P(y|x^i, \Theta^{t-1}) \text{Count}(x^i, y, 1 \rightarrow 2) \]

Inputs: A sample of \(m \) points, \(x^1, x^2, \ldots, x^m \). A model \(P(x, y|\Theta) \) which takes the following form:

\[P(x, y|\Theta) = \prod_{r=1}^{|\Theta|} \Theta_r^{\text{Count}(x,y,r)} \]

Initialization: Choose some initial value for the parameters, call this \(\Theta^0 \).

Algorithm: For \(t = 1 \ldots T \),

- For \(r = 1 \ldots |\Theta| \), set \(\overline{\text{Count}}(r) = 0 \)
- For \(i = 1 \ldots m \),
 - For all \(y \), calculate \(t_y = P(x^i, y|\Theta^{t-1}) \)
 - Set \(\text{sum} = \sum_y t_y \)
 - For all \(y \), set \(u_y = t_y / \text{sum} \) (note that \(u_y = P(y|x^i, \Theta^{t-1}) \))
 - For all \(r = 1 \ldots |\Theta| \), set \(\overline{\text{Count}}(r) = \overline{\text{Count}}(r) + \sum_y u_y \text{Count}(x^i, y, r) \)
- For all \(r = 1 \ldots |\Theta| \), set

 \[\Theta_r^t = \frac{\overline{\text{Count}}(r)}{Z} \]

 where \(Z \) is a normalization constant that ensures that the multinomial distribution of which \(\Theta_r^t \) is a member sums to 1.

Output: Return parameter values \(\Theta^T \)
The Forward-Backward Algorithm for HMMs

- Fortunately, there is a way of avoiding this brute force strategy with HMMs, using a dynamic programming algorithm called the forward-backward algorithm.

- Say that we could efficiently calculate the following quantities for any x of length n, for any $j \in 1 \ldots n$, and for any $p \in 1 \ldots (N - 1)$ and $q \in 1 \ldots N$:

$$P(y_j = p, y_{j+1} = q | x, \Theta) = \sum_{y : y_j = p, y_{j+1} = q} P(y | x, \Theta)$$

- The inner sum can now be re-written using terms such as this:

$$\sum_y P(y|x^t, \Theta^{t-1}) \text{Count}(x^i, y, p \rightarrow q) = \sum_{j=1}^{n_i} P(y_j = p, y_{j+1} = q | x^t, \Theta^{t-1})$$

The Forward Probabilities

Given an input sequence $x_1 \ldots x_n$, we will define the forward probabilities as being

$$\alpha_p(j) = P(x_1 \ldots x_{j-1}, y_j = p | \Theta)$$

for all $j \in 1 \ldots n$, for all $p \in 1 \ldots N - 1$.

The Forward Probabilities

Given the forward and backward probabilities, the first thing we can calculate is the following:

$$Z = P(x_1, x_2, \ldots x_n | \Theta) = \sum_p \alpha_p(j) \beta_p(j)$$

for any $j \in 1 \ldots n$. Thus we can calculate the probability of the sequence $x_1, x_2, \ldots x_n$ being emitted by the HMM.
We can calculate the probability of being in any state at any position:

\[P(y_j = p|x, \Theta) = \frac{\alpha_p(j)\beta_p(j)}{Z} \]

for any \(p, j \).

We can calculate the probability of each possible state transition, as follows:

\[P(y_j = p, y_{j+1} = q|x, \Theta) = \frac{\alpha_p(j)a_{p,q}b_p(o_j)\beta_q(j + 1)}{Z} \]

for any \(p, q, j \).

- Given an input sequence \(x_1 \ldots x_n \), for any \(p \in 1 \ldots N \), \(j \in 1 \ldots n \),
 \[\alpha_p(j) = P(x_1 \ldots x_{j-1}, y_j = p | \Theta) \] forward probabilities
- **Base case:**
 \[\alpha_p(1) = \pi_p \] for all \(p \)
- **Recursive case:**
 \[\alpha_p(j + 1) = \sum_q \alpha_q(j)a_{q,p}b_q(x_j) \] for all \(p = 1 \ldots N - 1 \) and \(j = 1 \ldots n - 1 \)

- Given an input sequence \(x_1 \ldots x_n \):
 \[\beta_p(j) = P(x_j \ldots x_n | y_j = p, \Theta) \] backward probabilities
- **Base case:**
 \[\beta_p(n) = a_{p,N}b_p(x_n) \] for all \(p = 1 \ldots N - 1 \)
- **Recursive case:**
 \[\beta_p(j) = \sum_q a_{p,q}b_p(x_j)\beta_q(j + 1) \] for all \(p = 1 \ldots N - 1 \) and \(j = 1 \ldots n - 1 \)

Justification for the Algorithm

We will make use of a particular directed graph. The graph is associated with a particular input sequence \(x_1, x_2, \ldots x_n \), and parameter vector \(\Theta \), and has the following vertices:

- A “source” vertex, which we will label \(s \).
- A “final” vertex, which we will label \(f \).
- For all \(j \in 1 \ldots n \), for all \(p \in 1 \ldots N - 1 \), there is an associated vertex which we will label \(\langle j, p \rangle \).
Justification for the Algorithm

Given this set of vertices, we define the following directed edges:

- There is an edge from s to each vertex $\langle 1, p \rangle$ for $p = 1 \ldots N - 1$. Each such edge has a weight equal to π_p.
- For any $j \in 1 \ldots n - 1$, and $p, q \in 1 \ldots N - 1$, there is an edge from vertex $\langle j, p \rangle$ to vertex $\langle (j + 1), q \rangle$. This edge has weight equal to $a_{p,q} b_p(x_j)$.
- There is an edge from each vertex $\langle n, p \rangle$ for $p = 1 \ldots N - 1$ to the final vertex f. Each such edge has a weight equal to $a_{p,N} b_p(x_n)$

Justification for the Algorithm

The resulting graph has a large number of paths from the source s to the final state f; each path goes through a number of intermediate vertices. The weight of an entire path will be taken as the product of weights on the edges in the path. You should be able to convince yourself that:

1. For every state sequence $y_1, y_2, \ldots y_n$ in the original HMM, there is a path through with graph that has the sequence of states $s, \langle 1, y_1 \rangle, \ldots, \langle n, y_n \rangle, f$
2. The path associated with state sequence $y_1, y_2, \ldots y_n$ has weight equal to $P(x, y|\Theta)$

Another Application of EM in NLP: Topic Modeling

- Say we have a collection of m documents
- Each document x^i for $i = 1 \ldots m$ is a sequence of words $x^i_1, x^i_2, \ldots x^i_n$
- E.g., we might have a few thousand articles from the New York Times
Another Application of EM in NLP: Topic Modeling

• We’ll assume that \(y^i \) for \(i = 1 \ldots m \) is a hidden “topic variable”. \(y^i \) can take on any of the values 1, 2, \ldots K

• For any document \(x^i \), and topic variable \(y \), we write

\[
P(x^i, y | \Theta) = P(y) \prod_{j=1}^{n} P(x^i_j | y)
\]

• \(\Theta \) contains two types of parameters:
 - \(P(y) \) for \(y \in 1 \ldots K \) is the probability of selecting topic \(y \)
 - \(P(w | y) \) for \(y \in 1 \ldots K \), \(w \) in some vocabulary of possible words, is the probability of generating the word \(w \) given topic \(y \)

Results from Hofmann, SIGIR 1999

• Applied the method to 15,000 documents, using \(k = 128 \) topics

• Examples of 6 topics (in each case, table shows the 10 words for which \(P(w | y) \) is maximized):

plane, airport, crash, flight, safety, aircraft, air, passenger, board, airline	space, shuttle, mission, astronauts, launch, station, crew, nasa, satellite, earth
home, family, like, love, kids, mother, life, happy, friends, cnn	film, movie, music, new, best, hollywood, love, actor, entertainment, star
un, bosnian, serbs, bosnia, serb, sarajevo, nato, peacekeepers, nations, peace	refugees, aid, rwanda, relief, people, camps, zaire, camp, food, rwandan

Another Application of EM in NLP: Word Clustering

• As before, we can use EM to find

\[
\Theta_{ML} = \arg \max_{\Theta} L(\Theta) = \arg \max_{\Theta} \sum_i \log \sum_y P(x^i, y | \Theta)
\]

• Result: for each of the \(K \) topics, we have a different distribution over words, \(P(w | y) \)

• Say we have a collection of \(m \) bigrams

• Each bigram consists of a word pair \(w^i_1, w^i_2 \) where \(w^i_2 \) follows \(w^i_1 \)

• We’d like to build a model of \(P(w^i_2 | w^i_1) \)
Another Application of EM in NLP: Word Clustering

- We’ll assume that y^i for $i = 1 \ldots m$ is a hidden “cluster variable”. y^i can take on any of the values $1, 2, \ldots K$

- For any bigram w_1^i, w_2^i, we write

$$P(w_2^i | w_1^i, \Theta) = \sum_y P(w_2^i | y) P(y | w_1^i)$$

- Θ contains two types of parameters:
 - $P(y | w_1)$ for $y \in 1 \ldots K$ is the probability of selecting cluster y given that the first word in the bigram is w_1
 - $P(w_2 | y)$ for $y \in 1 \ldots K$, w_2 in some vocabulary of possible words, is the probability of selecting w_2, given cluster y

As before, we can use EM to find

$$\Theta_{ML} = \arg \max_{\Theta} L(\Theta) = \arg \max_{\Theta} \sum_i \log \sum_y P(w_2^i | y) P(y | w_1^i)$$

Result: for each of the K clusters, we have the distributions $P(w_2 | y)$ and $P(y | w_1)$

See Saul and Pereira, 1997, for more details