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An Experiment/Some I ntuition Maximum Likelihood Estimation
¢ | have three coins in my pocket,

_ N e \We have data points 1, xo, . . . x,, drawn from some set X’
Caoin 0 has probability A of heads;

Coin 1 has probability p; of heads;
Coin 2 has probability p» of heads e We have a parameter vector ©

e For each trial I do the following:

Firgt | toss Coin 0 e We have a parameter space 2

If Coin O turns up heads, | toss coin 1 three times
If Coin O turns up tails, | toss coin 2 three times e We have a distribution P(z | ©) for any © € €2, such that

| don't tell you whether Coin 0 came up heads or tails, > P(z|©)=1and P(z|©)>0forall z
or whether Coin 1 or 2 was tossed three times, zEX
but | do tell you how many heads/tails are seen at each trial

e you see the following sequence: ]
y gseq e We assume that our data points zi,zs,...x, are drawn

(HHH),(T'TT),(HHH),(I'TT),(HHH) at random (independently, identically distributed) from a
What would you estimate as the values for A\, p; and p,? distribution P(x | ©*) for some ©* € Q




L og-Likelihood

e \We have data points z1, zs, . . . x,, drawn from some set X’
e \We have a parameter vector ©, and a parameter space {2
e \We have a distribution P(z | ©) forany © € Q

e The likelihood is

Likelihood(©) = P(x1,x2,...2, | ©) = H P(z; | ©)
i=1

e The log-likelihood is

L(©) = log Likelihood(©) = Y log P(z; | ©)

i=1

Maximum Likelihood Estimation

e Given asample =1, zs, ... x,, choose

O = argmaxgeoL(0) = argmaxgeq Y log P(z; | ©)

e For example, take the coin example:
say x ...z, has Count(H) heads, and (n — Count(H)) tails

=
L(@) — IOg ((_)Count(H) % (1 _ @)n—Count(H)>
= Count(H)log® + (n — Count(H))log(l — ©)

e \We now have
Count(H)

n

@ML =

A First Example: Coin Tossing

X = {H, T}. Our data points z1, zs, . ..z, are a sequence of
heads and tails, e.g.

HHT THHHTHH

Parameter vector © is a single parameter, i.e., the probability
of coin coming up heads

Parameter space 2 = [0, 1]

Distribution P(x | ©) is defined as

o Ifz =H
P(“@):{ 1-© (fr—T

A Second Example: Probabilistic Context-Free Grammars

e X is the set of all parse trees generated by the underlying
context-free grammar. Our sample is n trees 77 ...T,, such
thateach T; € X.

e R is the set of rules in the context free grammar
N is the set of non-terminals in the grammar

e O, for r € R is the parameter for rule r
e Let R(a) C R be the rules of the form o — 3 for some «

e The parameter space €2 is the set of © € [0, 1]'¥ such that

forallae N > ©,=1

reR(a)




e \We have
P(T | @) — H @Count(T,r)
T
reR
where Count(T,r) isthe number of timesruler isseeninthetree T’

= logP(T' | ©) =Y Count(T,r)log®,

reR

Multinomial Distributions

e X isafinite set, e.g., X = {dog, cat, the, saw}

e Our sample z1, xo, ...z, is drawn from X’
e.g., 1, T2, x3 = dog, the, saw

e The parameter O is a vector in R" where m = | X|
eg., ©; = P(dog), ©3 = P(cat), ©3 = P(the), ©4 = P(saw)

e The parameter space is

=1

e If our sample is xy, xo, 23 = dog, the, saw, then

L(©) =log P(x1,x9,x3 = dog, the, saw) = log ©;+log O3+log O,

Maximum Likelihood Estimation for PCFGs

e \We have

log P(T'| ©) =Y Count(T,r)log©,

reR

where Count(T,r) isthe number of timesruler isseenin thetree T’

e And,
L(©) =>log P(T; | ©) =>_ Y Count(T};,7)log O,

i T€ER
e Solving O, = argmaxgL(©) gives
> Count(T;, 1)

B Zz ZSGR(a) CO’LLnt(T;, S)
where r is of the form o« — [ for some (3

O,
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Modelswith Hidden Variables

e Now say we have two sets X and )/, and a joint distribution
P(z,y]®©)

e If we had fully observed data, (z;, y;) pairs, then
L(©®) = ZlogP(xi,yi | ©)

e If we have partially observed data, =; examples, then
L) = YlogPz]©)

= ZlogZP(mi,y | ©)

yey
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e The EM (Expectation Maximization) algorithm is a method
for finding

Oy = argmaxg Zlog Z P(z;,y | ©)

i yey

The Three Coins Example

e e.g., in the three coins example:
Y={H T}
X ={HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
©= {Aaplap2}

e and
P(z,y|©)=P(y|©)P(z|y,0)

A Ify =H
P(y|®):{ 1- A IfZ:T

h t
[t -p)" lfy=H
Plely.©) _{ Pi(L—p2)t My=T

where h = number of headsin x, t = number of tailsin x




The Three Coins Example The Three Coins Example
e Various probabilities can be calculated, for example: e Various probabilities can be calculated, for example:
Plz=THT,y =H|0) = Api(1—p;)? Plz=THT,y =H|0) = Api(1—p)?

Plx=THT,y=T|0) (1= M\)p2(1 — pa)?

P(z =THT | ©) P(x =THT,y =H| ©)
+P(x=THT,y =T O)
Api(1—p1)? + (1= A)pa(1 — p2)?

The Three Coins Example The Three Coins Example
e Various probabilities can be calculated, for example: e Various probabilities can be calculated, for example:
Plz=THT,y =H|0) = Api(1—p;)? Plz=THT,y =H|0) = Api(1—p;)?

Px=THT,y=T|0) = (1—Apa(l —p)° Plx=THT,y=T|0) = (1—Apa(1—ps)’

P(z =THT | ©) P(x =THT,y =H| ©)
+P(x=THT,y =T O)
Ap1(1 = p1)* + (1= A)pa(1 — pa)?

P(x =THT,y =H| ©)
P(z = THT | ©)
Api(1 —p1)?
Ap1(1 = p1)? + (1 = A)pa(1 — p2)?




The Three Coins Example

e Fully observed data might look like:

((HHH),H), (TTT),T), (HHH),H),(TTT),T),((HHH), H)

e In this case maximum likelihood estimates are:

>
I

= 3

[\V] -

I I
olo ©lo GUw

The Three Coins Example
e Partially observed data might look like:

(HHH),(TTT),(HHH),(TTT),(HHH)
e If current parameters are \, p1, ps

P({HHH), H)
P((HHH), H) + P((HHH), T)
A3
Apt + (1= \)p3

Ply=H|z = (HHH) =

PTTT), H)
P((TTT),H) + P((TTT), T)
)\(1 —p1)3

A1 =p1)3+ (1 =) —p2)?

The Three Coins Example

e Partially observed data might look like:

(HHH), (TTT),(HHH), (TTT), (HHH)

e How do we find the maximum likelihood parameters?

The Three Coins Example

e If current parameters are \, p1, p2

H| z = (HHH) Apy
B i+ (1=l

A1 —pr)?
A1 =p1)? + (1 =A)(1 —p2)?

o IfA=0.3,p; = 0.3,ps = 0.6

Ply=H|z = (HHH))

H|xz=(TTT))




The Three Coins Example The Three Coins Example: Summary

o After filling in hidden variables for each example, e Begin with parameters A\ = 0.3, p; = 0.3, p» = 0.6
partially observed data might look like: ’ ’

e Fill in hidden variables, using
0508

0.
0.9492
0.6967
0.3033
0.0508
0.
0.
0.
(

T|HHH P(y:H|JJ:<HHH>)

—H|TTT
=T|TTT
— H| HHH
=T | HHH
—H|TTT
=T |TTT
— H| HHH
— T | HHH

P(y=H|z = (TTT))

9492 e Re-estimate parameters to be A = 0.3092,p; = 0.0987, py; =
6967 0.8244

3033
).0508
0.9492

T e T D e

The Three Coins Example

[lteration | A | p1 [ po [ » [ o | ps | ps |
o New Estimates: 0 0.3000 | 0.3000 | 0.6000 || 0.0508 | 0.6967 | 0.0508 | 0.6967
1 0.3738 | 0.0680 | 0.7578 || 0.0004 | 0.9714 | 0.0004 | 0.9714
((HHH), P(y =H|HHH .0508 2 0.4859 | 0.0004 | 0.9722 || 0.0000 | 1.0000 | 0.0000 | 1.0000
((HHH), P(y=T|HHH 9492 3 0.5000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000

(TTT),

(TTT),

H
T
H
T

) P 0
) P 0.
) Ply=H|TTT 0.6967 The coin examplefory = {(HHH),(TTT),(HHH),(TTT)}. The solution
) P 0.

3033 that EM reaches is intuitively correct: the coin-tosser has two coins, one which
aways shows up heads, the other which always shows tails, and is picking
between them with equal probability (A = 0.5). The posterior probabilities p;
3 % 0.0508 + 2 x 0.6967 show that we are certain that coin 1 (tail-biased) generated y» and 4, Whereas

\ = : . : = 0.3092 coin 2 generated y; and ys.

_3><3><0.0508+O><2><0.6967_OO987
P 3 3% 0.0508 + 3 x 2 % 0.6967

Ply=T|TTT

3x3x0.9492 4+ 0 x 2 x 0.3033
P2 = = 0.8244
3x3x%x0.9492+ 3 x 2 x 0.3033

26



[lteration [ X | p1 | I pn | P2 [ ps | pa

|

0 0.3000 | 0.3000 | 0.6000 || 0.0508 | 0.6967 | 0.0508 | 0.6967

0.3092 | 0.0987 | 0.8244 || 0.0008 | 0.9837 | 0.0008 | 0.9837

1
2 0.3940 | 0.0012 | 0.9893 || 0.0000 | 1.0000 | 0.0000 | 1.0000
3 0.4000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000

The coin examplefor {(HHH), (TTT),(HHH),(TTT),(HHH)}. A isnow
0.4, indicating that the coin-tosser has probability 0.4 of selecting the tail-biased
coin.

[Meration[| A [ p [ po [[ » [ P2 [ P | ps |
0 ] 0.3000 | 0.7000 | 0.7000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000

Thecoinexamplefory = {(HHH),(TTT),(HHH),(TTT)}, with p; and py
initialised to the same value. EM is stuck at a saddle point

[Meration ]| X [ p [ po [ 51 | P2 | Ps | pa

|

0 0.3000 | 0.3000 | 0.6000 || 0.1579 | 0.6967 | 0.0508 | 0.6967

0.4005 | 0.0974 | 0.6300 || 0.0375 | 0.9065 | 0.0025 | 0.9065

0.4632 | 0.0148 | 0.7635 || 0.0014 | 0.9842 | 0.0000 | 0.9842

0.4924 | 0.0005 | 0.8205 || 0.0000 | 0.9941 | 0.0000 | 0.9941

0.4970 | 0.0000 | 0.8284 || 0.0000 | 0.9949 | 0.0000 | 0.9949

The coin example fory = {(HHT),(TTT),(HHH),(TTT)}. EM sdlects a
tails-only coin, and a coin which is heavily heads-biased (p, = 0.8284). It's
certain that ¢, and y3 were generated by coin 2, as they contain heads. y» and y,
could have been generated by either coin, but coin 1 isfar more likely.

[Meration ]| X [ p [ po [ 51 | P2 | Ps | pa

0 0.3000 | 0.7001 | 0.7000 || 0.3001 | 0.2998 | 0.3001 | 0.2998
0.2999 | 0.5003 | 0.4999 || 0.3004 | 0.2995 | 0.3004 | 0.2995
0.2999 | 0.5008 | 0.4997 || 0.3013 | 0.2986 | 0.3013 | 0.2986
0.2999 | 0.5023 | 0.4990 || 0.3040 | 0.2959 | 0.3040 | 0.2959
0.3000 | 0.5068 | 0.4971 || 0.3122 | 0.2879 | 0.3122 | 0.2879
0.3000 | 0.5202 | 0.4913 || 0.3373 | 0.2645 | 0.3373 | 0.2645
0.3009 | 0.5605 | 0.4740 || 0.4157 | 0.2007 | 0.4157 | 0.2007
0.3082 | 0.6744 | 0.4223 || 0.6447 | 0.0739 | 0.6447 | 0.0739
0.3593 | 0.8972 | 0.2773 || 0.9500 | 0.0016 | 0.9500 | 0.0016
0.4758 | 0.9983 | 0.0477 || 0.9999 | 0.0000 | 0.9999 | 0.0000
0.4999 | 1.0000 | 0.0001 || 1.0000 | 0.0000 | 1.0000 | 0.0000
0.5000 | 1.0000 | 0.0000 || 1.0000 | 0.0000 | 1.0000 | 0.0000

OO N[O U W NF

=
o

=
=

The coinexamplefory = {(HHH),(ITTT),(HHH),(TTT)}. If we
initialise p; and p, to be asmall amount away from the saddle point p; = po,
the algorithm diverges from the saddle point and eventually reaches the global

maximum.

32




The EM Algorithm

[teaion | X [ » [ »s [ i | o | s | b | o
0 0.3000 | 0.6999 | 0.7000 || 0.2999 | 0.3002 | 0.2999 | 0.3002 e O is the parameter vector at ¢’th iteration
0.3001 | 0.4998 | 0.5001 || 0.2996 | 0.3005 | 0.2996 | 0.3005
0.3001 | 0.4993 | 0.5003 || 0.2987 | 0.3014 | 0.2987 | 0.3014
0.3001 | 0.4978 | 0.5010 || 0.2960 | 0.3041 | 0.2960 | 0.3041
0.3001 | 0.4933 | 0.5029 || 0.2880 | 0.3123 | 0.2880 | 0.3123
0.3002 | 0.4798 | 0.5087 || 0.2646 | 0.3374 | 0.2646 | 0.3374 e lterative procedure is defined as
0.3010 | 0.4396 | 0.5260 || 0.2008 | 0.4158 | 0.2008 | 0.4158
0.3083 | 0.3257 | 0.5777 || 0.0739 | 0.6448 | 0.0739 | 0.6448 O' = argmaxoQ (0, 0')
0.3594 | 0.1029 | 0.7228 || 0.0016 | 0.9500 | 0.0016 | 0.9500
0.4758 | 0.0017 | 0.9523 || 0.0000 | 0.9999 | 0.0000 | 0.9999 where
0.4999 | 0.0000 | 0.9999 || 0.0000 | 1.0000 | 0.0000 | 1.0000
11 | 0.5000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000 RO, =>">" Py | z;,0" ") log P(z;,y | ©)
Thecoinexamplefory = {(HHH),(TTT),(HHH),(TTT)}. If we i yey
initialise p; and p, to be asmall amount away from the saddle point p; = po,
the algorithm diverges from the saddle point and eventually reaches the global
maximum.

e Choose ©° (at random, or using various heuristics)

OO N[O B|WN -

=
o

Overview The EM Algorithm

e Iterative procedure is defi ned as & = argmaxoQ(0, ©!~1), where
Q©,0) =>">"P(y|z:;,0"")log P(z;,y | ©)

i yeY

e Maximum-Likelihood Estimation

e Models with hidden variables .
e Key points:

e The EM algorithm for a simple example (3 coins) — Intuition: fi Il in hidden variables y accordingto P(y | z;, ©)

— EM is guaranteed to converge to alocal maximum, or saddle-point,
of the likelihood function

e The general form of the EM algorithm — Ingenerd, if

argmaxg Z log P(xi,y: | ©)

¢ Hidden Markov models _ _ _
has a simple (analytic) solution, then

argmaxe ZZP(y | z;,0)log P(z;,y | ©)
iy

also has asimple (analytic) solution.




Overview An Example

o Maximum-Likelihood Estimation e Take N = 3 states. States are {1, 2, 3}. Final state is state 3.
e Alphabet K = {the, dog}.
e Models with hidden variables
e Distribution over initial state is 7 = 1.0, 19 = 0, 13 = 0.
e The EM algorithm for a simple example (3 coins) e Parameters a; ; are
i1
e The general form of the EM algorithm i=1 /05
i=2

e Hidden Markov models
e Parameters b;(0) are

1
2

The Structure of Hidden Markov Models A Generative Process

Have N states, states1... N e Pick the start state s; to be state 7 for i = 1...N with
probability ;.
Without loss of generality, take /V to be the final or stop state
o Sett=1
Have an alphabet K. For example X' = {a, b} e Repeat while current state s, is not the stop state (/V):
Parameter 7; for i = 1... N is probability of starting in state i — Emita symbol o, € K with probability bs,(o;)
— Pick the next state s, as state j with probability as, ;.
e Parameter a,; fori = 1...(N — 1), and j = 1...N is —t=t+1

probability of state j following state i

e Parameter b;(o) fori =1...(N—1),and o € K is probability
of state 7 emitting symbol o




Probabilities Over Sequences Another Hidden Variable Problem

e An output sequence is a sequence of observations o, ... or .
where each o; € K e We have an HMM with N = 3, K = {e, f, g, h}

e.g. the dog the dog dog the

_ e We see the following output sequencesin training data
e A state sequenceis a sequence of states s; ... sy where each

eg.121221

¢ HMM defines a probability for each state/output sequence pair g
g

e.g. the/1 dog/2 the/1 dog/2 the/2 dog/1 has probability

T by (the) a2 bQ(dOg) as 1 by (thE) a2 bg(dog) az2 bg(thQ) as 1 by (dog)a173
. How would you choose the parameter values for =;, a; ;, and

Formally: bi(0)? J

T

P(sl...sT,ol...oT):W51x<

=2

A Hidden Variable Problem

e We have an HMM with N = 3, K = {e, f, g, h}

e \We see the following output sequencesin training data

How would you choose the parameter values for 7;, a, ;, and




