
6.864, Fall 2007: Problem Set 2
Total points: 195 points

Due date: 5pm, 18th October 2007
Submit to Igor Malioutov either by email to igorm@csail.mit.edu, or by hand to Stata G360

Late policy: 5 points off for every day late, 0 points if handed in after 5pm on 23rd October

Question 1 (20 points)

Clarissa Linguistica decides to build a log-linear model for language modeling. She has a training sample
(xi, yi) for i = 1 . . . n, where each xi is a prefix of a document (e.g., xi = “Yesterday, George Bush said”)
and yi is the next word seen after this prefix (e.g., yi = “that”). As usual in log-linear models, she defines a
function f(x, y) that maps any x, y pair to a vector in Rd. Given parameter values v ∈ Rd, the model defines

P (y|x,v) =
ev·f(x,y)∑

y′∈V ev·f(x,y′)

where V is the vocabulary, i.e., the set of possible words; and v · f(x, y) is the inner product between the
vectors v and f(x, y).

Given the training set, the training procedure returns parameters v∗ = arg maxv L(v), where

L(v) =
∑

i

log P (yi|xi,v) − C
∑
k

v2
k

and C > 0 is some constant.

Clarissa makes the following choice of her first two features in the model:

f1(x, y) =

{
1 if y = model and previous word in x is the
0 otherwise

f2(x, y) =

{
1 if y = model and previous word in x is the
0 otherwise

So f1(x, y) and f2(x, y) are identical features.

Question (10 points): Show that for any training set, with f1 and f2 defined as above, the optimal parameters
v∗ satisfy the property that v∗1 = v∗2 .

Question (10 points): Now say we define the optimal parameters to be v∗ = arg maxv L(v), where

L(v) =
∑

i

log P (yi|xi,v) − C
∑
k

|vk|

and C > 0 is some constant. (Here |vk| is the absolute value of the k’th feature.) In this case, does the
property v∗1 = v∗2 necessarily hold? If not, what constraints do hold for the values v∗1 and v∗2?

Question 2 (15 points)

Nathan L. Pedant now decides to build a bigram language model using log-linear models. He gathers a
training sample (xi, yi) for i = 1 . . . n. Given a vocabulary of words V , each xi and each yi is a member of

V . Each (xi, yi) pair is a bigram extracted from the corpus, where the word yi is seen following xi in the
corpus.

Nathan’s model is similar to Clarissa’s, except he chooses the optimal parameters v∗ to be arg maxL(v)
where

L(v) =
∑

i

log P (yi|xi,v)

The features in his model are of the following form:

fi(x, y) =

{
1 if y = model and x = the
0 otherwise

i.e., the features track pairs of words. To be more specific, he creates one feature of the form

fi(x, y) =

{
1 if y = w2 and x = w1

0 otherwise

for every (w1, w2) in V × V .

Question (15 points): Assume that the training corpus contains all possible bigrams: i.e., for all w1, w2 ∈ V
there is some i such that xi = w1 and yi = w2. The optimal parameter estimates v∗ define a probability
P (y = w2|x = w1,v∗) for any bigram w1, w2. Show that for any w1, w2 pair, we have

P (y = w2|x = w1,v∗) =
Count(w1, w2)

Count(w1)

where Count(w1, w2) = number of times (xi, yi) = (w1, w2), and Count(w1) = number of times xi = w1.

Question 3 (15 points)

We are going to come up with a modified version of the Viterbi algorithm for trigram taggers. Assume
that the input to the Viterbi algorithm is a word sequence w1 . . . wn. For each word in the vocabulary, we
have a tag dictionary T (w) that lists the tags t such that P (w|t) > 0. Take K to be a constant such that
|T (w)| ≤ K for all w. Give pseudo-code for a version of the Viterbi algorithm that runs in O(nK3) time
where n is the length of the input sentence.

Question 4 (15 points)

We will construct a log-linear model that defines P (y|x) for an “input” x paired with an “output” y. In
this question the objects x and y are particularly simple: x can be either 0 or 1, and y is an ordered pair of
symbols, y = 〈y1, y2〉, where y1 ∈ {0, 1} and y2 ∈ {0, 1}. Thus y can take one of four possible values:
〈0, 0〉, 〈0, 1〉, 〈1, 0〉, or 〈1, 1〉

We define two features in the model:

f1(x, 〈y1, y2〉) =

{
1 if y1 = 1
0 otherwise

f2(x, 〈y1, y2〉) =

{
1 if y2 = 1
0 otherwise

The model then defines a probability distribution

P (〈y1, y2〉|x) =
ef1(x,〈y1,y2〉)θ1+f2(x,〈y1,y2〉)θ2∑

〈y′
1,y′

2〉∈Y
ef1(x,〈y′

1,y′
2〉)θ1+f2(x,〈y′

1,y′
2〉)θ2

where Y is the set {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Show that it is possible to write

P (〈y1, y2〉|x) = P1(y1|x) × P2(y2|x)

where P1 and P2 are themselves log-linear models, with a single feature each.

Question 5

Nathan L. Pedant generates (x, y) pairs as follows. Take V to be set of possible words (vocabulary), e.g., V
= {the, cat, dog, happy, ...}. Take V ′ to be the set of all words in V , plus the reversed string
of each word, e.g., V ′ = {the, eht, cat, tac, dog, god, happy, yppah, ...}.

For each x, Nathan chooses a word from some vocabulary V . He then does the following:

• With 0.4 probability, he chooses y to be identical to x.

• With 0.3 probability, he chooses y to be the reversed string of x.

• With 0.3 probability, he chooses y to be some string that is neither x nor the reverse of x. In this case
he chooses y from the uniform distribution over words in V ′ that are neither x nor the reverse of x.

Question 5(a) (10 points)

Define a log-linear model that can model this distribution P (y|x) perfectly (Note: you may assume that
there are no palindromes in the vocabulary, i.e., no words like eye which stay the same when reversed.)
Your model should make use of as few parameters as possible (we will give you 10 points for a correct
model with 2 parameters, 8 points for a correct model with 3 parameters, 5 points for a correct model with
more than 3 parameters.)

Question 5(b) (10 points)

Write an expression for each of the probabilities

P (the|the)
P (eht|the)
P (dog|the)

as a function of the parameters in your model.

Question 5(c) (10 points)

What value do the parameters in your model take to give the distribution described above?

Question 6 (100 points)

In this programming question, we are going to build a trigram HMM tagger. The joint probability of a word
sequence w1, w2, . . . wn and a tag sequence t1, t2, . . . , tn is defined as

P (w1 . . . wn, t1 . . . tn) = P (#END|tn−2, tn−1)
n∏

i=1

P (ti|ti−2, ti−1)
n∏

i=1

P (wi|ti)

The Viterbi algorithm searches for

arg max
t1...tn

P (w1 . . . wn, t1 . . . tn)

for a given word sequence w1 . . . wn.

In the file poscounts.gz you will find counts that will allow you to estimate the parameters of the model.
There are 4 types of counts in this file:

• Lines where the second token is DENOM, for example

124953 DENOM NN

These are the counts used in the denominators of any maximum likelihood estimates in the model.
For example, in this case the count of the unigram tag NN is 124952.

• Lines where the second token is NUMER, for example

32545 NUMER NNP NNP

These are the counts used in the numerators of any maximum likelihood estimates in the model. For
example, in this case the count of the tag bigram NNP NNP is 32545.

• Lines where the second token is WORDTAG1, for example

38612 WORDTAG1 DT the

These are counts used in the numerators of maximum-likelihood estimates of P (wi|ti). For example,
the word the is seen tagged 38612 times as DT in this case.

• Lines where the second token is WORDTAG2, for example

77079 WORDTAG2 DT

These are counts used in the denominators of maximum-likelihood estimates of P (wi|ti). For exam-
ple, the tag DT is seen 77079 times, according to this count.

Some further notes:

• Each sentence has t−2 = #S1, t−1 = #S2, and tn+1 = #END. Hence some of the n-grams will
include these symbols.

• Words occurring less than 5 times in training data have been mapped to the word token UNKA.

Part 1: Estimating P (w|t) parameters. You should write a function that returns P (w|t) for a particular
word w and tag t, where

P (w|t) =
Count(w, t)
Count(t)

The counts in this case are taken from the WORDTAG1 and WORDTAG2 lines in poscounts.gz.

Part 2: Estimating P (ti|ti−2, ti−1) parameters. You should write a function that returns P (ti|ti−2, t−1)
for a particular tag trigram ti−2, ti−1, ti. This estimate should be defined as follows:

If Countd(ti−2, ti−1) > 0

Return 1
3PML(ti|ti−2, ti−1) + 1

3PML(ti|ti−1) + 1
3PML(ti)

Else if Countd(ti−1) > 0

Return 1
2PML(ti|ti−1) + 1

2PML(ti)

Else

Return PML(ti)

Here Countd are the denominator counts (lines with DENOM in the poscounts.gz file). The PML

estimates are defined as

PML(ti|ti−1, ti−2) =
Countn(ti−2, ti−1, ti)
Countd(ti−2, ti−1)

PML(ti|ti−1) =
Countn(ti−1, ti)
Countd(ti−1)

PML(ti) =
Countn(ti)
Countd()

where Countn are the counts from the NUMER lines in the poscounts.gz file. Note that you can get
Countd() from the following line of the file:

950563 DENOM BLANK

Note: make sure your code has the following functionality. To test the code it should be possible to
read in a file, line by line, that contains one tag trigram per line. For example, the file might contain

NN NN DT
NN DT NN

As output, the code should write the probability for each trigram in turn, for example

0.054
0.032

Part 3: Implementing the Viterbi algorithm

You should now implement a version of the Viterbi algorithm, which searches for the most probable se-
quence of tags under the model.

Note: make sure your code has the following functionality. To test the code it should be possible to
read in a file, line by line, that contains one sentence per line. To see a test file, look at

wsj.19-21.test

For each line, your code should

(1) print the most likely sequence of tags under the model

(2) print the log-probability of this sequence of tags

Note: The sentences in this input file already have infrequent words replaced with the UNKA token

One important note about the efficiency of your implementation: for each word in the vocabulary, you
should compile a “tag dictionary” that lists the set of tags that have been seen at least once with that word.
You should use this fact to make a more efficient algorithm (see question 3 of this problem set).

Part 4: Extending the Approach

Thus far (in part 2) we’ve used a relatively simplistic approach for smoothing the P (ti|ti−2, ti−1) parame-
ters. In the final part of this project, you should implement a more sophisticated form of smoothing. You
could use any one of the methods described in the lecture on language modeling. In your write-up you
should describe the method you’ve implemented, and describe how well it performs compared to the simple
form of smoothing developed in part 2. To test the accuracy of the two approaches, we’ve provided the file
wsj.19-21.withtags which has the correct tag sequences for the test sentences.

