
6.864, Fall 2007: Problem Set 1
Total points: 120 points

Due date: 5pm, 26th September 2007
Submit to Igor Malioutov either by email to igorm@csail.mit.edu, or by hand to Stata G369

Late policy: 5 points off for every day late, 0 points if handed in after 1pm on October 1st 2007

Question 1 (20 points)

A probabilistic context-free grammar G = (N,Σ, R, S, P) in Chomsky Normal Form is defined as follows:

• N is a set of non-terminal symbols (e.g., NP, VP, S etc.)

• Σ is a set of terminal symbols (e.g., cat, dog, the, etc.)

• R is a set of rules which take one of two forms:

– X → Y1Y2 for X ∈ N , and Y1, Y2 ∈ N

– X → Y for X ∈ N , and Y ∈ Σ

• S ∈ N is a distinguished start symbol

• P is a function that maps every rule in R to a probability, which satisfies the following conditions:

– ∀r ∈ R, P (r) ≥ 0

– ∀X ∈ N,
∑

X→α∈R P (X → α) = 1

Now assume we have a probabilistic CFG G′, which has a set of rules R which take one of the two following
forms:

• X → Y1Y2 . . . Yn for X ∈ N , n ≥ 2, and ∀i, Yi ∈ N

• X → Y for X ∈ N , and Y ∈ Σ

Note that this is a more permissive definition than Chomsky normal form, as some rules in the grammar may
have more than 2 non-terminals on the right-hand side. An example of a grammar that satisfies this more
permissive definition is as follows:

S → NP VP 0.7
S → NP NP VP 0.3
VP → Vt NP 0.8
VP → Vt NP PP 0.2
NP → DT NN NN 0.3
NP → NP PP 0.7
PP → P NP 1.0

Vt → saw 1.0
NN → man 0.7
NN → woman 0.2
NN → telescope 0.1
DT → the 1.0
IN → with 0.5
IN → in 0.5

Question 1(a): Describe how to transform a PCFG G′, in this more permissive form, into an “equivalent”
PCFG G in Chomsky normal form. By equivalent, we mean that there is a one-to-one function f between
derivations in G′ and derivations in G, such that for any derivation T ′ under G′ which has probability p,
f(T ′) also has probability p. (Note: one major motivation for this transformation is that we can then apply
the dynamic programming parsing algorithm, described in lecture, to the transformed grammar.) Hint: think
about adding new rules with new non-terminals to the grammar.

Question 1(b): Show the resulting grammar G after applying your transformation to the example PCFG
shown above.

Question 2 (20 points)

Nathan L. Pedant decides to build a treebank. He finally produces a corpus which contains the following
three parse trees:

S

NP

John

VP

V1

said

SBAR

COMP

that

S

NP

Sally

VP

VP

V2

snored

ADVP

loudly

S

NP

Sally

VP

V1

declared

SBAR

COMP

that

S

NP

Bill

VP

VP

V2

ran

ADVP

quickly

S

NP

Fred

VP

V1

pronounced

SBAR

COMP

that

S

NP

Jeff

VP

VP

V2

swam

ADVP

elegantly

Clarissa Lexica then purchases the treebank, and decides to build a PCFG, and a parser, using Nathan’s data.

Question 2(a): Show the PCFG that Clarissa would derive from this treebank.

Question 2(b): Show two parse trees for the string “Jeff pronounced that Fred snored loudly”, and calculate
their probabilities under the PCFG.

Question 2(c): Clarissa is shocked and dismayed, (see 2(b)), that “Jeff pronounced that Fred snored loudly”
has two possible parses, and that one of them—that Jeff is doing the pronouncing loudly—has relatively
high probability, in spite of it having the ADVP loudly modifiying the “higher” verb, pronounced. This type
of high attachment is never seen in the corpus, so the PCFG is clearly missing something. Clarissa decides
to fix the treebank, by altering some non-terminal labels in the corpus. Show one such transformation that
results in a PCFG that gives zero probability to parse trees with “high” attachments. (Your solution should
systematically refine some non-terminals in the treebank, in a way that slightly increases the number of
non-terminals in the grammar, but allows the grammar to capture the distinction between high and low
attachment to VPs.)

Question 3 (20 points)

We will refer to a “lexicalized PCFG” in Chomsky normal form, as a PCFG G = (N,Σ, R, S, P) similar to
that in question 1, where each of the rules in R takes one of the following three forms:

• X(h) → Y1(h) Y2(w) for X ∈ N , and Y1, Y2 ∈ N , and h,w ∈ Σ.
e.g., NP(man) → NP(man) PP(with).

• X(h) → Y1(w) Y2(h) for X ∈ N , and Y1, Y2 ∈ N , and h,w ∈ Σ.
e.g., S(snores) → NP(man) VP(snores).

• X(h) → h for X ∈ N , and h ∈ Σ
e.g., NP(man) → man.

Here the symbols in the grammar rules are of the form X(h), where X is a symbol such as NP, VP, etc., and
h is a lexical item such as man, snores, etc.

In addition, for any symbol of the form X(h), there is a probability PS(X(h)) which is the probability of
X(h) being chosen as the root of a parse tree. As one example, the tree

S(slept)

NP(cat)

D(the)

the

N(cat)

cat

VP(slept)

slept

would have probability

PS(S(slept))×
P (S(slept) → NP(cat) VP(slept)|S(slept))×
P (NP(cat) → D(the) N(cat)|NP(cat))×
P (D(the) → the|D(the))×
P (N(cat) → cat|N(cat))×
P (VP(slept) → slept|VP(slept))

Question 3(a): Describe a dynamic programming algorithm, similar to the one in lecture, which finds the
highest scoring parse tree under a grammar of this form. Your algorithm should make use of a dynamic
programming table π[i, j, k,X] where

π[i, j, k,X] = highest probability for any parse tree whose root is the symbol X(wk),

and which spans words i . . . j inclusive

For example, if the sentence being parsed is w1, w2, . . . w6 = the cat sat on the mat, then π[4, 6, 4, PP]
would store the maximum probability for any parse tree whose root is PP (on), and which spans the string
on the mat.

Note: your algorithm should also allow recovery of the parse tree which achieves the maximum probability.

Question 3(b): What is the running time of your algorithm?

Question 4 (20 points)

Recall the definition of a PCFG in Chomsky normal form from question 1. Now assume we have a proba-
bilistic CFG G′, which has a set of rules R which take one of the three following forms:

1. X → Y1Y2 for X ∈ N , and Y1, Y2 ∈ N

2. X → Y for X ∈ N , and Y ∈ Σ

3. X → Y for X ∈ N , and Y ∈ N

Note that this is very similar to a Chomsky normal form grammar, but that we are now allowed rules of form
(3), such as S -> VP, where there is a single symbol on the right-hand-side of the rule, and this symbol is
a non-terminal. We will refer to these new rules as unary productions. (Note that productions of the form
in (2), such as N -> dog, will not be referred to as unary productions, as their right-hand-side is a terminal
symbol.) We will refer to rules captured by cases (1) and (2) as non-unary productions.

As one example, the following grammar contains unary productions:

S → NP VP 0.7
S → SBAR VP 0.3
VP → Vi 0.4
VP → Vt NP 0.4
VP → V3 SBAR 0.2
NP → NN 0.3
NP → DT NN 0.7
SBAR → COMP S 0.6
SBAR → S 0.4

Vi → sleeps 1.0
Vt → saw 1.0
V3 → said 1.0
NN → man 0.7
NN → woman 0.2
NN → telescope 0.1
DT → the 1.0
COMP → that 1.0

In this question, we’ll attempt to convert a PCFG with unary productions into an “equivalent” PCFG which
is in Chomsky normal form (note that we’ll have to be careful with what we mean by “equivalent”, we’ll
come to this shortly).

As a first step, we will use the classic transformation for (non-probabilistic) context-free grammars, that
results in a new grammar that accepts the same set of strings as the original grammar, but which has all
unary productions removed. Applying this transformation to the grammar above results in the CFG shown
in figure 1 (note that the probabilities are missing – we’ll fill them in soon).

This grammar transformation works in the following way. We form a new grammar G ′ from an existing
grammar G by first taking all non-unary rules from G. Then, if there is any sequence of n productions in G

B0 → B1 → B2 . . . Bn−1 → α

such that Bi → Bi+1 for i = 0 . . . n − 2 are unary productions in the grammar, and Bn−1 → α is a
non-unary production, then we add the rule

B0 → α

to G′. For example, in the above example we have the sequence

SBAR → S → NP VP

S → NP VP
S → SBAR VP
VP → sleeps
VP → Vt NP
VP → V3 SBAR
NP → man
NP → woman
NP → telescope
NP → DT NN
SBAR → COMP S
SBAR → NP VP
SBAR → SBAR VP

Vi → sleeps
Vt → saw
V3 → said
NN → man
NN → woman
NN → telescope
DT → the
COMP → that

Figure 1: A transformed grammar, G′

so we add the rule SBAR → NP VP to G′. As another example, we have the sequence

VP → Vi → sleeps

so we add the rule VP → sleeps to G′.

We now come to the definition of equivalence. We will say that the PCFG G′ is “equivalent” to a PCFG G
if:

• For any string w, if T (w) is the highest probability parse tree for w under the grammar G, and T ′(w)
is the highest prob. parse under G′, then these two parse trees have the same probability under their
respective grammars.

• There is a function f such that T (w) = f(T ′(w)). i.e., there is a function such that the highest
probability parse tree in the original grammar can be recovered from the highest probability parse tree
under G′.

• In some cases, we will allow the PCFG G′ to be deficient. This means that we will relax the require-
ment on probabilities on rules to satisfy the condition ∀X ∈ N,

∑
X→α∈R P (X → α) < 1 rather

than ∀X ∈ N,
∑

X→α∈R P (X → α) = 1, as in the definition in question 1.

Question 4(a): (10 points) Add probabilities to the grammar in figure 1, so that the new PCFG G ′ is
equivalent to the old PCFG G. Describe the function f that maps a parse tree in G ′ to a parse tree in G.

Question 4(b): (10 points) Describe a strategy for creating an equivalent PCFG G ′ in Chomsky normal
form for any PCFG G in the form described at the start of this question (i.e., a PCFG that may have unary
productions in addition to Chomsky normal form rules). You may assume that for any unary rule, its prob-
ability is strictly less than 1. Describe also the function f used to recover the highest probability tree under
G from the highest probability tree under G′. Note that your resulting PCFG G′ may be deficient in some
cases. Illustrate your transformation on the two PCFGs shown in figure 2 (these grammars will help you,
in terms of illustrating some “tricky” cases that you’ll run into with unary productions). Hint: remember
throughout this question that the goal of G′ is to allow recovery of the maximum probability
parse under G.

Grammar 1:

S → NP VP 0.7
S → SBAR VP 0.3
VP → Vi 0.4
VP → Vt NP 0.4
VP → V3 SBAR 0.2
NP → NN 0.3
NP → DT NN 0.7
SBAR → COMP S 0.4
SBAR → S 0.5
SBAR → NP VP 0.1

Vi → sleeps 1.0
Vt → saw 1.0
V3 → said 1.0
NN → man 0.7
NN → woman 0.2
NN → telescope 0.1
DT → the 1.0
COMP → that 1.0

Grammar 2:

S → NP VP 0.7
S → SBAR VP 0.2
S → SBAR 0.1
VP → Vi 0.4
VP → Vt NP 0.4
VP → V3 SBAR 0.2
NP → NN 0.3
NP → DT NN 0.7
SBAR → COMP S 0.4
SBAR → S 0.5
SBAR → X 0.1
X → S 0.1
X → NP NP 0.9

Vi → sleeps 1.0
Vt → saw 1.0
V3 → said 1.0
NN → man 0.7
NN → woman 0.2
NN → telescope 0.1
DT → the 1.0
COMP → that 1.0

Figure 2: Two grammars with unary productions

Question 5 (15 points)

Say we have a vocabulary V , i.e., a set of possible words. We’d like to estimate a unigram distribution
P (w) over w ∈ V . We observe n sample points, w1, w2, . . . wn (note that this sample may not include all
members of V , particularly if n is small compared to |V|.) For any word seen r times in the training sample,
the Good-Turing estimate of its count is

GT (r) = (r + 1) ∗
Nr+1

Nr

,

where Nr is the number of members of V which are seen r times in the corpus. For any w which is observed
in the training corpus, we make the estimate P (w) = GT (C(w))/n, where C(w) is the number of times w
is seen in the sample.

1. Can you see any problem with this estimation method for words with large values for C(w)?

2. Prove that under this definition
∑

w∈V ′ P (w) ≤ 1, where V ′ is the subset of V seen in the training
corpus. If the “missing” probability mass 1 −

∑
w∈V ′ P (w) is divided evenly amongst the words not

seen in the corpus, show that P (w) for any word not in the corpus is N1/(n × N0) where N0 is
|V| − |V ′|, and N1 as before is the number of members of V seen exactly once in the corpus.

Question 6 (20 points)

In lecture we saw a method for language modeling called linear interpolation, where the trigram estimate
P̂ (wi | wi−2, wi−1) is defined as

P̂ (wi | wi−2, wi−1) = λ1 × PML(wi | wi−2, wi−1) + λ2 × PML(wi | wi−1) + λ3 × PML(wi)

Here λ1, λ2, λ3 are weights for the trigram, bigram, and unigram estimates, and PML stands for the maximum-
likelihood estimate.

One way to optimize the λ values (again, as seen in lecture), is to use a set of validation data, in the following
way. Say the validation data consists of n sentences, S1, S2, . . . , Sn. Define Count2(w1, w2, w3) to be the
number of times the trigram w1, w2, w3 is seen in the validation sentences. Then the λ values are chosen to
maximize the following function:

L(λ1, λ2, λ3) =
∑

w1,w2,w3∈V

Count2(w1, w2, w3) log P̂ (w3, |w1, w2)

Question: show that choosing λ values that maximize L(λ1, λ2, λ3) is equivalent to choosing λ values that
minimize the perplexity of the language model on the validation data.

Question 7 (5 points)

In the lecture we saw an improved method for linear interpolation where the λ values are sensitive to the
number of times the bigram (wi−2, wi−1) has been seen; the intuition behind this was that the more fre-
quently this bigram has been seen, the more weight should be put on the trigram estimate.

Here we’ll define a method that is similar in form to the method seen in lecture, but differs in some important
ways. First, we define a function Φ(wi−2, wi−1, wi) which maps trigrams into “bins”, depending on their
count. For example, we can define Φ as follows:

Φ(wi−2, wi−1, wi) = 1 If Count(wi−2, wi−1, wi) = 0
Φ(wi−2, wi−1, wi) = 2 If 1 ≤ Count(wi−2, wi−1, wi) ≤ 2
Φ(wi−2, wi−1, wi) = 3 If 3 ≤ Count(wi−2, wi−1, wi) ≤ 5
Φ(wi−2, wi−1, wi) = 4 If 6 ≤ Count(wi−2, wi−1, wi)

The trigram estimate P̂ (wi | wi−2, wi−1) is then defined as

P̂ (wi | wi−2, wi−1) = λ
Φ(wi−2,wi−1,wi)
1 × PML(wi | wi−2, wi−1)

+λ
Φ(wi−2,wi−1,wi)
2 × PML(wi | wi−1)

+λ
Φ(wi−2,wi−1,wi)
3 × PML(wi)

Notice that we now have 12 smoothing parameters, i.e., λi
j for i = 1 . . . 4 and j = 1 . . . 3.

Question: Unfortunately this estimation method has a serious problem: what is it?

