Midterm, COMS 4705

Name:

Uni:

\[\begin{array}{cccccc}
20 & 8 & 18 & 10 & 10 & 10 \\
\end{array} \]

Good luck!
Question 1 (5 points) We define a PCFG where non-terminal symbols are \(\{S, A, B\} \), the terminal symbols are \(\{a, b\} \), and the start non-terminal (the non-terminal always at the root of the tree) is S. The PCFG has the following rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow A A)</td>
<td>0.6</td>
</tr>
<tr>
<td>(S \rightarrow A B)</td>
<td>0.4</td>
</tr>
<tr>
<td>(A \rightarrow A B)</td>
<td>0.7</td>
</tr>
<tr>
<td>(A \rightarrow a)</td>
<td>0.2</td>
</tr>
<tr>
<td>(A \rightarrow b)</td>
<td>0.1</td>
</tr>
<tr>
<td>(B \rightarrow A B)</td>
<td>0.9</td>
</tr>
<tr>
<td>(B \rightarrow a)</td>
<td>0.05</td>
</tr>
<tr>
<td>(B \rightarrow b)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

For the input string \(aab \) show two possible parse trees under this PCFG, and show how to calculate their probability.
Question 2 (8 points) Recall that a PCFG defines a distribution $p(t)$ over parse trees t. For any sentence s, if we define $T(s)$ to be the set of valid parse trees for the sentence s, the probability of the sentence under the PCFG is

$$p(s) = \sum_{t \in T(s)} p(t)$$

Recall also that for a bigram HMM the probability of any sentence $x_1 \ldots x_n$ under the HMM is

$$p(x_1 \ldots x_n) = \sum_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the sum is over all state sequences with $y_{n+1} = \text{STOP}$, and $p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$ is the joint probability of the pair of sequences $x_1 \ldots x_n$ and $y_1 \ldots y_{n+1}$ under the HMM.

Now consider the following PCFG:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow NP \ VP$</td>
<td>1.0</td>
</tr>
<tr>
<td>$VP \rightarrow V \ NP$</td>
<td>1.0</td>
</tr>
<tr>
<td>$NP \rightarrow John$</td>
<td>0.6</td>
</tr>
<tr>
<td>$NP \rightarrow Mary$</td>
<td>0.4</td>
</tr>
<tr>
<td>$V \rightarrow saw$</td>
<td>1.0</td>
</tr>
</tbody>
</table>

In the space below, write down an HMM that gives the same distribution over sentences as the PCFG shown above. You should write down: 1) the set K of states in the HMM; 2) the set V of words in the HMM; 3) the transition parameters in the HMM; 4) the emission parameters in the HMM.
(Page intentionally left blank.)
Question 3 (7 points) Recall that a PCFG defines a distribution $p(t)$ over parse trees t. For any sentence s, if we define $\mathcal{T}(s)$ to be the set of valid parse trees for the sentence s, the probability of the sentence under the PCFG is

$$p(s) = \sum_{t \in \mathcal{T}(s)} p(t)$$

Now consider the following PCFG (which is the same as the PCFG in the previous question):

$$\begin{align*}
S &\rightarrow NP \ VP & 1.0 \\
VP &\rightarrow V \ NP & 1.0 \\
NP &\rightarrow John & 0.6 \\
NP &\rightarrow Mary & 0.4 \\
V &\rightarrow saw & 1.0
\end{align*}$$

In the space below, write down the parameters of a **trigram language model** that gives the same distribution over sentences as the PCFG shown above.

(Note that each sentence in the trigram language model will be terminated by a STOP symbol, which does not appear at the end of sentences generated by the PCFG.)
(Page intentionally left blank.)
For the following two questions, write TRUE or FALSE below the question. PLEASE GIVE JUSTIFICATION FOR YOUR ANSWERS: AT MOST 50% CREDIT WILL BE GIVEN FOR ANSWERS WITH NO JUSTIFICATION.

For all questions in this section we assume as usual that a language model consists of a vocabulary \mathcal{V}, and a function $p(x_1 \ldots x_n)$ such that for all sentences $x_1 \ldots x_n \in \mathcal{V}^\dagger$, $p(x_1 \ldots x_n) \geq 0$, and in addition $\sum_{x_1 \ldots x_n \in \mathcal{V}^\dagger} p(x_1 \ldots x_n) = 1$. Here \mathcal{V}^\dagger is the set of all sequences $x_1 \ldots x_n$ such that $n \geq 1$, $x_i \in \mathcal{V}$ for $i = 1 \ldots (n-1)$, and $x_n = \text{STOP}$.

We assume that we have a bigram language model, with

$$p(x_1 \ldots x_n) = \prod_{i=1}^{n} q(x_i|x_{i-1})$$

The parameters $q(x_i|x_{i-1})$ are estimated from a training corpus using linear interpolation. Assume that for any bigram (u,v), $c(u,v)$ is the number of times the bigram (u,v) is seen in the training corpus. In addition assume that for any unigram u,

$$c(u) = \sum_{v \in \mathcal{V} \cup \{\text{STOP}\}} c(u,v)$$

Hence $c(u)$ is the number of times the unigram u is seen as the first word in a bigram.

We assume that for any $u \in \mathcal{V}$, $c(u) > 0$. So every word is seen at least once in the training corpus.

The interpolated estimate is then defined as follows:

$$q(v|u) = \lambda_1(u) \times p_{ML}(v|u) + (1 - \lambda_1(u)) \times p_{ML}(v)$$

where $p_{ML}(v|u)$ and $p_{ML}(v)$ are the bigram and unigram maximum-likelihood estimates, and

$$\lambda_1(u) = \frac{c(u)}{1 + c(u)}$$

We assume throughout this question that all words seen in any test corpus are in the vocabulary \mathcal{V}.

Question 4 (4 points) True or False? Under the above definition for $q(v|u)$, for any $u \in V$, we have

$$\sum_{v \in V \cup \{\text{STOP}\}} q(v|u) = 1$$
Question 5 (4 points) True or False? For any test corpus, under the above definition for $q(v|u)$, the perplexity under the language model will be less than ∞.
Part #3

18 points

For the following two questions, write TRUE or FALSE below the question. PLEASE GIVE JUSTIFICATION FOR YOUR ANSWERS: AT MOST 50% CREDIT WILL BE GIVEN FOR ANSWERS WITH NO JUSTIFICATION.

For all questions in this section we assume as usual that a language model consists of a vocabulary V, and a function $p(x_1 \ldots x_n)$ such that for all sentences $x_1 \ldots x_n \in V^l$, $p(x_1 \ldots x_n) \geq 0$, and in addition $\sum_{x_1 \ldots x_n \in V^l} p(x_1 \ldots x_n) = 1$. Here V^l is the set of all sequences $x_1 \ldots x_n$ such that $n \geq 1$, $x_i \in V$ for $i = 1 \ldots (n - 1)$, and $x_n = \text{STOP}$.

We assume that we have a bigram log-linear language model, with

$$p(x_1 \ldots x_n) = \prod_{i=1}^{n} p(x_i|x_{i-1}; \theta)$$

where the bigram probabilities $p(x_i|x_{i-1}; \theta)$ are defined using a log-linear model. Specifically, the model makes use of a feature vector definition $f(x, y)$, that maps each bigram (x, y) to a feature vector $f(x, y) \in \mathbb{R}^d$, and a parameter vector $\theta \in \mathbb{R}^d$, with

$$p(y|x; \theta) = \frac{\exp(\theta \cdot f(x, y))}{\sum_{y' \in V \cup \{\text{STOP}\}} \exp(\theta \cdot f(x, y'))}$$
Question 6 (4 points) Given a training corpus consisting of bigrams \((x^{(j)}, y^{(j)})\) for \(j = 1 \ldots n\), the parameters are chosen to be

\[
\theta^* = \arg \max L(\theta)
\]

where

\[
L(\theta) = \sum_{j=1}^{n} \log p(y^{(j)}|x^{(j)}; \theta) - \frac{\lambda}{2} \sum_{k=1}^{d} (\theta_k)^2
\]

Here \(\lambda > 0\) is a positive constant.

True or false? For any test corpus such that every word in the test corpus is in the set \(\mathcal{V}\), the perplexity under the parameters \(\theta^*\) is less than \(\infty\).
Question 7 (4 points) True or false? For any test corpus such that every word in the test corpus is in the set \(\mathcal{V} \), there are parameters \(\theta \) such that the perplexity on the test corpus is \(N + 1 \) where \(N = |\mathcal{V}| \).
Question 8 (10 points) If we again define \(N = |\mathcal{V}| \), show that it is possible to define a log-linear language model with a single feature (i.e., \(d = 1 \)) such that

\[
p(y|x; \theta) = 0.8 \quad \text{if } x = y
\]

and

\[
p(y|x; \theta) = \frac{0.2}{N} \quad \text{if } x \neq y
\]

You should write down your definition for the single feature \(f_1(x, y) \), and show the value for the parameter \(\theta_1 \) that gives the above distribution.
Part #4 10 points

Question 9 (10 points) In the box below, complete a dynamic programming algorithm that takes as input an integer n, and a probabilistic context-free grammar G, and returns the maximum probability under the PCFG for any tree that has exactly n words.

Hint: the algorithm fills in values for $\pi(i, X)$ for all $i \in \{1 \ldots n\}$, and for all non-terminals X. The value for $\pi(i, X)$ should be the maximum probability for any parse tree with X at the root with exactly i words.

Input: an integer n, a PCFG $G = (N, \Sigma, S, R, q)$ in Chomsky normal form where N is a set of non-terminals, Σ is the set of words, S is the start symbol, R is the set of rules in the grammar, and q is the set of rule parameters.

Initialization:
For all $X \in N$,
\[
\pi(1, X) =
\]

Algorithm:
- For $i = 2 \ldots n$
 - For all $X \in N$, calculate
 \[
 \pi(i, X) =
 \]

Output: Return $\pi(n, S)$
Part #5

Consider a bigram log-linear tagger, where the conditional probability of a tag sequence \(y_1 \ldots y_n \) given an input sentence \(x_1 \ldots x_n \) is

\[
p(y_1 \ldots y_n | x_1 \ldots x_n) = \prod_{i=1}^{n} p(y_i | x_1 \ldots x_n, i, y_{i-1}; \theta)
\]

where

\[
p(y_i | x_1 \ldots x_n, i, y_{i-1}; \theta)
\]

is a log-linear model with parameters \(\theta \).

The bigram log-linear tagger defines a function from sentences \(x_1 \ldots x_n \) to tag sequences \(y_1 \ldots y_n = h(x_1 \ldots x_n) \) as follows:

\[
h(x_1 \ldots x_n) = \text{arg max } p(y_1 \ldots y_n | x_1 \ldots x_n)
\]

Question 10 (10 points) Assume that we have a bigram log-linear tagger with vocabulary \(V = \{a, b\} \) and a set of possible tags \(K = \{A, B\} \). We would like to build a tagger such that

\[
\begin{align*}
h(a) &= A \\
h(aa) &= A A \\
h(aaa) &= A A A \\
\cdots \\
h(b) &= B \\
h(bb) &= B B \\
h(bbb) &= B B B \\
\cdots
\end{align*}
\]

In other words if the input sentence consists of one or more a’s, the output of the tagger should be a sequence of all A’s. If the input sentence consists of one or more b’s, the output of the tagger should be all B’s. For sentences that contain both symbols \(a \) and \(b \) you do not need to worry about the behaviour of the tagger.

In the space below, write down the features and parameters of a bigram log-linear tagger such that it implements the function \(h(\ldots) \) described above.
(Page intentionally left blank.)
Assume that we wish to build a log-linear parsing model, using the history-based (Ratnaparkhi) method presented in lectures, which makes use of actions START(X) for every non-terminal X, JOIN(X) for every non-terminal X, and CHECK=YES/CHECK=NO.

Given a log-linear history-based model that defines a distribution $p(t|x_1...x_n)$ over trees t conditioned on the input sentence $x_1...x_n$, the model defines a function from sentences $x_1...x_n$ to trees $t = h(x_1...x_n)$ as follows:

$$h(x_1...x_n) = \operatorname{arg\, max}_t p(t|x_1...x_n)$$

where the arg max is taken over all possible parse trees for $x_1...x_n$.

Now assume that we’d like to build a parser such that

$h(\text{John remembered Fido sleeps}) = S$

\hspace{1cm} John \hspace{1cm} VP

\hspace{1.5cm} remembered \hspace{1cm} S

\hspace{2.5cm} Fido \hspace{0.5cm} sleeps

and

$h(\text{John remembered Fido fondly}) = S$

\hspace{1cm} John \hspace{1cm} VP

\hspace{1.5cm} remembered \hspace{1cm} Fido \hspace{0.5cm} fondly$

(Continued over the page.)
Question 11 (10 points) Now consider the features of a log-linear model that correctly implements the function $h(x_1 \ldots x_n)$. Each feature f_k takes as input a sequence of sub-trees $t_1 \ldots t_m$, a position $j \in \{1 \ldots m\}$ indicating which sub-tree is the left-most without a START or JOIN action at its root, and a candidate action a.

For example, for the input $John$ remembered $Fido$ fondly, after the sequence of actions

\[
\begin{align*}
\text{START(S)} \\
\text{CHECK = NO} \\
\text{START(VP)} \\
\text{CHECK = NO}
\end{align*}
\]

we have $m = 4$, $j = 3$, and

\[
t_1 \ldots t_4 = \begin{array}{c} \text{START(S)} \\ \text{John} \\ \text{START(VP)} \\ \text{Fido fondly} \end{array}
\]

Complete features 5 and 6 below so that the model can correctly learn the function $h(\ldots)$. Assume that we define $t_j = \ast$ for $j < 1$ or $j > m$, where \ast is a special symbol. Assume that root(t_j) returns the root symbol for subtree t_j. Assume that additional features may be required in the model for the CHECK actions, and for building higher level structures in the tree.

\[
f_1(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = John \text{ and } a = \text{START(S)} \\ 0 & \text{otherwise} \end{cases}
\]

\[
f_2(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = \text{remembered} \text{ and } a = \text{START(VP)} \\ 0 & \text{otherwise} \end{cases}
\]

\[
f_3(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = \text{sleeps} \text{ and } a = \text{JOIN(S)} \\ 0 & \text{otherwise} \end{cases}
\]

\[
f_4(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = \text{fondly} \text{ and } a = \text{JOIN(VP)} \\ 0 & \text{otherwise} \end{cases}
\]

\[
f_5(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = Fido \text{ and root}(t_{j+1}) = \underline{\quad} \text{and } a = \underline{\quad} \text{COMPLETE HERE} \\ 0 & \text{otherwise} \end{cases}
\]

\[
f_6(t_1 \ldots t_m, j, a) = \begin{cases} 1 & \text{if root}(t_j) = Fido \text{ and root}(t_{j+1}) = \underline{\quad} \text{and } a = \underline{\quad} \text{COMPLETE HERE} \\ 0 & \text{otherwise} \end{cases}
\]
(Page deliberately left blank.)