
Midterm, COMS 4705

Name:

Uni:

20 8 18 10 10 10

Good luck!
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Part #1 20 points

Question 1 (5 points) We define a PCFG where non-terminal symbols are

{S,A,B}, the terminal symbols are {a, b}, and the start non-terminal (the non-
terminal always at the root of the tree) is S. The PCFG has the following rules:

S → A A 0.6
S → A B 0.4
A → A B 0.7
A → a 0.2
A → b 0.1
B → A B 0.9
B → a 0.05
B → b 0.05

For the input string aab show two possible parse trees under this PCFG, and
show how to calculate their probability.
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Question 2 (8 points) Recall that a PCFG defines a distribution p(t) over

parse trees t. For any sentence s, if we define T (s) to be the set of valid parse
trees for the sentence s, the probability of the sentence under the PCFG is

p(s) =
∑

t∈T (s)

p(t)

Recall also that for a bigram HMM the probability of any sentence x1 . . . xn
under the HMM is

p(x1 . . . xn) =
∑

y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the sum is over all state sequences with yn+1 = STOP, and p(x1 . . . xn, y1 . . . yn+1)
is the joint probability of the pair of sequences x1 . . . xn and y1 . . . yn+1 under
the HMM.

Now consider the following PCFG:

S → NP VP 1.0
VP → V NP 1.0
NP → John 0.6
NP → Mary 0.4
V → saw 1.0

In the space below, write down an HMM that gives the same distribution over
sentences as the PCFG shown above. You should write down: 1) the set K
of states in the HMM; 2) the set V of words in the HMM; 3) the transition
parameters in the HMM; 4) the emission parameters in the HMM.
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Question 3 (7 points) Recall that a PCFG defines a distribution p(t) over

parse trees t. For any sentence s, if we define T (s) to be the set of valid parse
trees for the sentence s, the probability of the sentence under the PCFG is

p(s) =
∑

t∈T (s)

p(t)

Now consider the following PCFG (which is the same as the PCFG in the
previous question):

S → NP VP 1.0
VP → V NP 1.0
NP → John 0.6
NP → Mary 0.4
V → saw 1.0

In the space below, write down the parameters of a trigram language model
that gives the same distribution over sentences as the PCFG shown above.

(Note that each sentence in the trigram language model will be terminated by
a STOP symbol, which does not appear at the end of sentences generated by
the PCFG.)
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Part #2 8 points

For the following two questions, write TRUE or FALSE below the question.
PLEASE GIVE JUSTIFICATION FOR YOUR ANSWERS: AT MOST
50% CREDIT WILL BE GIVEN FOR ANSWERS WITH NO JUS-
TIFICATION.

For all questions in this section we assume as usual that a language model
consists of a vocabulary V, and a function p(x1 . . . xn) such that for all sentences
x1 . . . xn ∈ V†, p(x1 . . . xn) ≥ 0, and in addition

∑
x1...xn∈V† p(x1 . . . xn) = 1.

Here V† is the set of all sequences x1 . . . xn such that n ≥ 1, xi ∈ V for i =
1 . . . (n− 1), and xn = STOP.

We assume that we have a bigram language model, with

p(x1 . . . xn) =

n∏
i=1

q(xi|xi−1)

The parameters q(xi|xi−1) are estimated from a training corpus using linear
interpolation. Assume that for any bigram (u, v), c(u, v) is the number of times
the bigram (u, v) is seen in the training corpus. In addition assume that for any
unigram u,

c(u) =
∑

v∈V∪{STOP}

c(u, v)

Hence c(u) is the number of times the unigram u is seen as the first word in a
bigram.

We assume that for any u ∈ V, c(u) > 0. So every word is seen at least once in
the training corpus.

The interpolated estimate is then defined as follows:

q(v|u) = λ1(u)× pML(v|u) + (1− λ1(u))× pML(v)

where pML(v|u) and pML(v) are the bigram and unigram maximum-likelihood
estimates, and

λ1(u) =
c(u)

1 + c(u)

We assume throughout this question that all words seen in any test
corpus are in the vocabulary V.
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Question 4 (4 points) True or False? Under the above definition for q(v|u),

for any u ∈ V, we have ∑
v∈V∪{STOP}

q(v|u) = 1
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Question 5 (4 points) True or False? For any test corpus, under the above

definition for q(v|u), the perplexity under the language model will be less than
∞.

4705 Midterm page 9 of 20



Part #3 18 points

For the following two questions, write TRUE or FALSE below the question.
PLEASE GIVE JUSTIFICATION FOR YOUR ANSWERS: AT MOST
50% CREDIT WILL BE GIVEN FOR ANSWERS WITH NO JUS-
TIFICATION.

For all questions in this section we assume as usual that a language model
consists of a vocabulary V, and a function p(x1 . . . xn) such that for all sentences
x1 . . . xn ∈ V†, p(x1 . . . xn) ≥ 0, and in addition

∑
x1...xn∈V† p(x1 . . . xn) = 1.

Here V† is the set of all sequences x1 . . . xn such that n ≥ 1, xi ∈ V for i =
1 . . . (n− 1), and xn = STOP.

We assume that we have a bigram log-linear language model, with

p(x1 . . . xn) =

n∏
i=1

p(xi|xi−1; θ)

where the bigram probabilities p(xi|xi−1; θ) are defined using a log-linear model.
Specifically, the model makes use of a feature vector definition f(x, y), that maps
each bigram (x, y) to a feature vector f(x, y) ∈ Rd, and a parameter vector
θ ∈ Rd, with

p(y|x; θ) =
exp (θ · f(x, y))∑

y′∈V∪{STOP} exp (θ · f(x, y′))
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Question 6 (4 points) Given a training corpus consisting of bigrams (x(j), y(j))

for j = 1 . . . n, the parameters are chosen to be

θ∗ = arg maxL(θ)

where

L(θ) =

n∑
j=1

log p(y(j)|x(j); θ)− λ

2

d∑
k=1

(θk)2

Here λ > 0 is a positive constant.

True or false? For any test corpus such that every word in the test corpus is in
the set V, the perplexity under the parameters θ∗ is less than ∞.
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Question 7 (4 points) True or false? For any test corpus such that every

word in the test corpus is in the set V, there are parameters θ such that the
perplexity on the test corpus is N + 1 where N = |V|.
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Question 8 (10 points) If we again define N = |V|, show that it is possible

to define a log-linear language model with a single feature (i.e., d = 1) such that

p(y|x; θ) = 0.8 if x = y

and

p(y|x; θ) =
0.2

N
if x 6= y

You should write down your definition for the single feature f1(x, y), and show
the value for the parameter θ1 that gives the above distribution.
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Part #4 10 points

Question 9 (10 points) In the box below, complete a dynamic programming

algorithm that takes as input an integer n, and a probabilistic context-free
grammar G, and returns the maximum probability under the PCFG for any
tree that has exactly n words.

Hint: the algorithm fills in values for π(i,X) for all i ∈ {1 . . . n}, and for all
non-terminals X. The value for π(i,X) should be the maximum probability for
any parse tree with X at the root with exactly i words.

Input: an integer n, a PCFG G = (N,Σ, S,R, q) in Chomsky normal form where N is a
set of non-terminals, Σ is the set of words, S is the start symbol, R is the set of rules in the
grammar, and q is the set of rule parameters.

Initialization:
For all X ∈ N ,

π(1, X) =

Algorithm:

• For i = 2 . . . n

– For all X ∈ N , calculate

π(i,X) =

Output: Return π(n, S)
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Part #5 10 points

Consider a bigram log-linear tagger, where the conditional probability of a tag
sequence y1 . . . yn given an input sentence x1 . . . xn is

p(y1 . . . yn|x1 . . . xn) =

n∏
i=1

p(yi|x1 . . . xn, i, yi−1; θ)

where
p(yi|x1 . . . xn, i, yi−1; θ)

is a log-linear model with parameters θ.

The bigram log-linear tagger defines a function from sentences x1 . . . xn to tag
sequences y1 . . . yn = h(x1 . . . xn) as follows:

h(x1 . . . xn) = arg max
y1...yn

p(y1 . . . yn|x1 . . . xn)

Question 10 (10 points) Assume that we have a bigram log-linear tagger

with vocabulary V = {a, b} and a set of possible tags K = {A,B}. We would
like to build a tagger such that

h(a) = A

h(aa) = A A

h(aaa) = A A A

. . .

h(b) = B

h(bb) = B B

h(bbb) = B B B

. . .

In other words if the input sentence consists of one or more a’s, the output of
the tagger should be a sequence of all A’s. If the input sentence consists of
one or more b’s, the output of the tagger should be all B’s. For sentences that
contain both symbols a and b you do not need to worry about the behaviour of
the tagger.

In the space below, write down the features and parameters of a bigram log-
linear tagger such that it implements the function h(. . .) described above.
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Part #6 10 points

Assume that we wish to build a log-linear parsing model, using the history-
based (Ratnaparkhi) method presented in lectures, which makes use of ac-
tions START(X) for every non-terminal X, JOIN(X) for every non-terminal X,
and CHECK=YES/CHECK=NO.

Given a log-linear history-based model that defines a distribution

p(t|x1 . . . xn)

over trees t conditioned on the input sentence x1 . . . xn, the model defines a
function from sentences x1 . . . xn to trees t = h(x1 . . . xn) as follows:

h(x1 . . . xn) = arg max
t
p(t|x1 . . . xn)

where the arg max is taken over all possible parse trees for x1 . . . xn.

Now assume that we’d like to build a parser such that

h(John remembered Fido sleeps) = S

John VP

remembered S

Fido sleeps

and

h(John remembered Fido fondly) = S

John VP

remembered Fido fondly

(Continued over the page.)
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Question 11 (10 points) Now consider the features of a log-linear model

that correctly implements the function h(x1 . . . xn). Each feature fk takes as
input a sequence of sub-trees t1 . . . tm, a position j ∈ {1 . . .m} indicating which
sub-tree is the left-most without a START or JOIN action at its root, and a
candidate action a.

For example, for the input John remembered Fido fondly, after the sequence of
actions

START(S)

CHECK = NO

START(VP)

CHECK = NO

we have m = 4, j = 3, and

t1 . . . t4 = START(S)

John

START(VP)

remembered

Fido fondly

Complete features 5 and 6 below so that the model can correctly learn the
function h(. . .). Assume that we define tj = * for j < 1 or j > m, where * is
a special symbol. Assume that root(tj) returns the root symbol for subtree tj .
Assume that additional features may be required in the model for the CHECK
actions, and for building higher level structures in the tree.

f1(t1 . . . tm, j, a) = 1 if root(tj) = John and a = START(S)

= 0 otherwise

f2(t1 . . . tm, j, a) = 1 if root(tj) = remembered and a = START(VP)

= 0 otherwise

f3(t1 . . . tm, j, a) = 1 if root(tj) = sleeps and a = JOIN(S)

= 0 otherwise

f4(t1 . . . tm, j, a) = 1 if root(tj) = fondly and a = JOIN(VP)

= 0 otherwise

f5(t1 . . . tm, j, a) = 1 if root(tj) = Fido and root(tj+1) = ︸ ︷︷ ︸
COMPLETE HERE

and a = ︸ ︷︷ ︸
COMPLETE HERE

= 0 otherwise

f6(t1 . . . tm, j, a) = 1 if root(tj) = Fido and root(tj+1) = ︸ ︷︷ ︸
COMPLETE HERE

and a = ︸ ︷︷ ︸
COMPLETE HERE

= 0 otherwise
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