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Abstract

We describe a distributed security system based
on SPKI/SDSI (Simple Public-Key Infrastruc-
ture/Simple Distributed Security Infrastructure) for
heterogeneously networked, diverse devices. All com-
ponents of the system, for example, appliances, wear-
able gadgets, software agents, and users have associ-
ated trusted software proxies that either run on the
appliance hardware or on a trusted computer. We
describe how security is integrated using two sepa-
rate protocols: a protocol for secure device-to-proxy
communication, and a protocol for secure proxy-to-
proxy communication. The proxy architecture and
the use of two separate protocols allows us to run
a computationally-inexpensive protocol on impover-
ished devices, and a sophisticated protocol for re-
source authentication and communication on more
powerful devices.

The proxy-to-proxy protocol layers SPKI/SDSI ac-
cess control over an application protocol, which, in
turn, is layered over a key-exchange protocol. The
SPKI/SDSI framework provides mechanisms for easy
maintenance of access control lists (ACLs). It also
features an elegant model for forming groups and del-
egating authority.

We have constructed a prototype system which al-
lows for secure and efficient access to a variety of net-
worked, mobile devices. We present qualitative and
quantitative evaluations of this system.

1 Introduction

Pervasive computing trends [6, 2] are causing a rapid
increase in the number of sensory and computing de-
vices in our environment. These devices range from
lightweight hardware appliances to supercomputers,
and from web applets to databases. Groups of devices
may be networked using low-bandwidth wireless radio
frequency (RF), Ethernet, infrared, or other means.
The communication protocols used within each group
may be different. Further, mobility dicates that de-
vices may enter and leave a network at a high rate.

Diversity in devices, as well as the heterogeneous and
dynamic nature of these networks, present significant
security challenges.

Implementing existing forms of secure, private
communication using a typical public-key infrastruc-
ture on all devices is difficult because the necessary
cryptographic algorithms are CPU-intensive. A com-
mon public-key algorithm such as RSA using 1024-
bit keys takes 43ms to sign and 0.6ms to verify on a
200MHz Intel Pentium Pro (a 32-bit processor) [29].
Some devices may have 8-bit microcontrollers run-
ning at 1-4 MHz, so public-key cryptography on a
device itself may not be an option. However, public-
key based communication between devices over a net-
work is still desirable.

In the rest of this section, we give an overview of
our approach and introduce our prototype system.
We describe the architecture of the resource discovery
and communication system in Section 2. The device-
to-proxy security protocol is briefly summarized in
Section 3. We introduce SPKI/SDSI and present the
proxy-to-proxy protocol that uses SPKI/SDSI in Sec-
tion 4. Section 5 describes the important features of
SPKI/SDSI. Related work is discussed in Section 6.
We evaluate the system in Section 7. Section 8 con-
cludes the paper.

1.1 Our Approach

To allow our system to use a public-key security
model while still allowing for simple devices, we cre-
ate a software proxy for each device. These proxies
are trusted implicitly and run on either an embed-
ded processor on the device or on a trusted com-
puter. In the case where the proxy is running on
an embedded processor, we assume that device-to-
proxy communication is inherently secure.1 If the
device has minimal computational power,2 we force
the communication to adhere to a device-to-proxy se-

1For example, in a video camera, the software that controls
various actuators runs on a powerful processor, and the proxy
for the camera can also run on the embedded processor.

2This is typically the case for lightweight devices, e.g. re-
mote controls, bio-sensors, etc.
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curity protocol (cf. Section 3). Proxies communicate
with each other using a separate protocol based on
SPKI/SDSI. Having two different protocols allows us
to run a computationally inexpensive security proto-
col on impoverished devices and a sophisticated pro-
tocol for resource authentication and communication
on more powerful devices.

Our main focus in this paper is the proxy-to-proxy
protocol, which uses SPKI/SDSI for access control.
The proxy-to-proxy protocol layers SPKI/SDSI ac-
cess control over an application protocol, which in
turn is layered over a key-exchange protocol. This
allows us to deal with a variety of application pro-
tocols which may be implemented across a wired or
wireless link in a heterogeneous network.

Using the SPKI/SDSI framework, access control
lists (ACLs) associated with resources can be created
once and rarely need to be modified. User access
rights are modified by issuing certificates based on
group membership. SPKI/SDSI also facilitates short
certificate validity periods to assist in the problem of
certificate revocation. In addition, SPKI/SDSI fea-
tures an elegant model for delegation of authority,
allowing for the partitioning of responsibilities. The
principal maintaining the ACL could, but need not
be, the same principal that authorizes users to use a
resource. This significantly eases the burden of sys-
tem administration.

1.2 Prototype System

Using the ideas described above, we have constructed
a prototype system which allows for secure and effi-
cient access to networked mobile devices. Devices
communicate with their proxies securely using vari-
ous protocols. In particular, lightweight devices use
the protocol described in Section 3 and Appendix A.
Proxies communicate using the protocol described in
Section 4.

By exploiting SPKI/SDSI, security is not compro-
mised as new users and devices enter the system,
nor when users and devices leave the system. As
presented in this paper, we believe that the use of
SPKI/SDSI has resulted in a system that is secure,
scalable, efficient, and easy to maintain.

2 System Architecture

The system has three primary component types: de-
vices, proxies and servers. A device is our name for
any type of shared network resource, either hardware
or software. It could be a printer, a wireless security
camera, a lamp, or a software agent. Since communi-
cation protocols and bandwidth between devices can
vary widely, each device has a unique proxy to unify
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Figure 1: System Overview

its interface with other devices. The servers provide
naming and discovery facilities to the various devices.

We assume a one-to-one correspondence between
devices and proxies. We also assume that all users
are equipped with K21s, whose proxies run on trusted
computers. Thus our system only needs to deal with
devices, proxies and the server network.

The system we describe is illustrated in Figure 1.

2.1 Devices

Each device, hardware or software, has an associated
trusted software proxy. In the case of a hardware
device, the proxy may run on an embedded proces-
sor within the device, or on a trusted computer net-
worked with the device. In the case of a software
device, the device can incorporate the proxy software
itself.

Each user possesses a badge called the K21 which
identifies the user to the system. In addition to infor-
mation regarding the user’s identity, the K21 includes
functionality that makes it location-aware. The K21
has a lightweight processor, thus it is a simple device,
incapable of executing complex cryptographical oper-
ations. It typically has a single button for input.3

Each device communicates with its own proxy over
the appropriate protocol for that particular device. A
printer wired into an Ethernet can communicate with
its proxy using TCP/IP. A wireless security camera
uses a wireless protocol for the same purpose. The

3See [15] for more information on the K21.
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K21 communicates to its proxy using the device-to-
proxy protocol described in Section 3 and Appendix
A. Thus, the device-side portion of the proxy must
be customized for each particular device.

2.2 Proxy

The proxy is software that runs on a network-visible
computer. The proxy’s primary function is to make
access-control decisions on behalf of the device it rep-
resents. It may also perform secondary functions such
as running scripted actions on behalf of the device
and interfacing with a directory service.

The proxy provides a very simple API to the de-
vice. The sendToProxy() method is called by the
device to send messages to the proxy. The send-
ToDevice() method is a called by the proxy to send
messages to the device. When a proxy receives a mes-
sage from another proxy, depending on the message,
the proxy may translate it into a form that can be
understood by the proxy’s particular device. It then
forwards the message to the device. When a proxy re-
ceives a message from its device, it may translate the
message into a general form understood by all proxies,
and then forward the message to other proxies. Any
time a proxy receives a message, before performing
a translation and passing the message on to the de-
vice, it performs the access control checks described
in Sections 4 and 5.

For ease of administration, we group proxies by
their administrators. An administrator’s set of prox-
ies is called a proxy farm. This set specifically in-
cludes the proxy for the administrator’s K21, which
is considered the root proxy of the proxy farm. When
the administrator adds a new device to the system,
the device’s proxy is automatically given a default
ACL, a duplicate of the ACL for the administrator’s
K21 proxy. The administrator can manually change
the ACL later, if he desires.

2.3 Servers and the Server Network

This network consists of a distributed collection of
independent name servers and routers. In fact, each
server acts as both a name server and a router. This
is similar to the name resolvers in the Intentional
Naming System (INS) [1], which resolve device names
to IP addresses, but can also route events. If the des-
tination name for an event matches multiple proxies,
the server network will route the event to all match-
ing destinations.

When a proxy comes online, it registers itself with
one of these servers. When a proxy uses a server to
perform a lookup on a name, the server searches its
directory for all names that match the given name,

and returns their IP addresses.

2.4 Resource discovery

The mechanism for resource discovery is similar to
the resource discovery protocol used by Sun Microsys-
tem’s Jini [25]. When a device comes online, it in-
structs its proxy to repeatedly broadcast a request
for a server to the local subnetwork. The request
contains the device’s name and the IP address and
port of its proxy. When a server receives one of these
requests, it issues a lease to the proxy.4 That is, it
adds the name/IP address pair to its directory. The
proxy must periodically renew its lease by sending the
same name/IP address pair to the server, otherwise
the server removes it from the directory. In this fash-
ion, if a device silently goes offline, or the IP address
changes, the proxy’s lease will no longer get renewed
and the server will quickly notice and either remove
it from the directory or change the IP address.

For example, imagine a device with the name
[name=foo] which has a proxy running on
10.1.2.3:4011. When the device is turned on, it
informs its proxy that it has come online, using
the device-to-proxy protocol described in Section 3
and Appendix A. The proxy begins to broadcast
lease-request packets of the form 〈[name=foo],
10.1.2.3:4011〉 on the local subnetwork. When (or
if) a server receives one of these packets, it checks
its directory for [name=foo]. If [name=foo] is not
there, the server creates a lease for it by adding
the name/IP address pair to the directory. If
[name=foo] is in the directory, the server renews
the lease. Suppose at some later time the device is
turned off. When the device goes down, it brings
the proxy offline with it, so the lease request packets
no longer get broadcast. That device’s lease stops
getting renewed. After some short, pre-defined
period of time, the server expires the unrenewed
lease and removes it from the directory.

3 Device-to-Proxy Protocol

The device-to-proxy protocol varies for different types
of devices. In particular, we consider lightweight
devices with low-bandwidth wireless network con-
nections and slow CPUs, and heavyweight devices
with higher-bandwidth connections and faster CPUs.
We assume that heavyweight devices are capable of
running proxy software locally (i.e., the proxy for
a printer could run on the printer’s CPU). With a

4Handling the scenario where the device is making false
claims about its attributes in the lease request packet is the
subject of ongoing research.

3



local proxy, a security protocol for secure device-
to-proxy communication is unnecessary, assuming
nobody tampers with the hardware itself. For
lightweight devices, the proxy must run elsewhere.
Appendix A gives a brief overview of a security pro-
tocol which is low-bandwidth and not CPU-intensive.
Mills’ Master’s thesis [15] has a more in-depth de-
scription.

4 Proxy to Proxy Protocol

SPKI/SDSI (Simple Public Key Infrastruc-
ture/Simple Distributed Security Infrastructure)
[7, 21] is a security infrastructure that is designed
to facilitate the development of scalable, secure,
distributed computing systems. SPKI/SDSI provides
fine-grained access control using a local name space
architecture and a simple, flexible, trust policy
model.

SPKI/SDSI is a public key infrastructure with an
egalitarian design. The principals are the public keys
and each public key is a certificate authority. Each
principal can issue certificates on the same basis as
any other principal. There is no hierarchical global
infrastructure. SPKI/SDSI communities are built
from the bottom-up, in a distributed manner, and
do not require a trusted “root.”

4.1 SPKI/SDSI Integration

We have adopted a client-server architecture for the
proxies. When a particular principal, acting on behalf
of a device or user, makes a request via one proxy to a
device represented by another proxy, the first proxy
acts like a client, and the second as a server. Re-
sources on the server are either public or protected
by SPKI/SDSI ACLs. If the requested resource is
protected by an ACL, the principal’s request must be
accompanied by a “proof of authenticity” that shows
that it is authentic, and a “proof of authorization”
that shows the principal is authorized to perform the
particular request on the particular resource. The
proof of authenticity is typically a signed request, and
the proof of authorization is typically a chain of cer-
tificates. The principal that signed the request must
be the same principal that the chain of certificates
authorizes.

This system design, and the protocol between the
proxies, is very similar to that used in SPKI/SDSI’s
Project Geronimo, in which SPKI/SDSI was inte-
grated into Apache and Netscape, and used to pro-
vide client access control over the web. Project
Geronimo is described in two Master’s theses [3, 14].

4.2 Protocol

The protocol implemented by the client and server
proxies consists of four messages. This protocol is
outlined in Figure 2, and following is its description:

1. The client proxy sends a request, unauthenti-
cated and unauthorized, to the server proxy.

2. If the client requests access to a protected re-
source, the server responds with the ACL pro-
tecting the resource5 and the tag formed from
the client’s request. A tag is a SPKI/SDSI
data structure which represents a set of requests.
There are examples of tags in the SPKI/SDSI
IETF drafts [7]. If there is no ACL protecting
the requested resource, the request is immedi-
ately honored.

3. (a) The client proxy generates a chain of certifi-
cates using the SPKI/SDSI certificate chain
discovery algorithm [4, 3]. This certificate
chain provides a proof of authorization that
the user’s key is authorized to perform its
request.
The certificate chain discovery algorithm
takes as input the ACL and tag from the
server, the user’s public key (principal), the
user’s set of certificates, and a timestamp.
If it exists, the algorithm returns a chain of
user certificates which provides proof that
the user’s public key is authorized to per-
form the operation(s) specified in the tag,
at the time specified in the timestamp. If
the algorithm is unable to generate a chain
because the user does not have the neces-
sary certificates,6 or if the user’s key is di-
rectly on the ACL, the algorithm returns
an empty certificate chain. The client gen-
erates the timestamp using its local clock.

(b) The client creates a SPKI/SDSI sequence
[7] consisting of the tag and the timestamp.
It signs this sequence with the user’s private
key, and includes copy of the user’s public

5The ACL itself could be a protected resource, protected
by another ACL. In this case, the server will return the latter
ACL. The client will need to demonstrate that the user’s key is
on this ACL, either directly or via certificates, before gaining
access to the ACL protecting the object to which access was
originally requested.

6If the user does not have the necessary certificates, the
client could immediately return an error. In our design, how-
ever, we choose not to return an error at this point; instead,
we let the client send an empty certificate chain to the server.
This way, when the request does not verify, the client can pos-
sibly be sent some error information by the server which lets
the user know where he should go to get valid certificates.
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key in the SPKI/SDSI signature. The client
then sends the tag-timestamp sequence, the
signature, and the certificate chain gener-
ated in step 3a to the server.

4. The server verifies the request by:

(a) Checking the timestamp in the tag-
timestamp sequence against the time on the
server’s local clock to ensure that the re-
quest was made recently.7

(b) Recreating the tag from the client’s request
and checking that it is the same as the tag
in the tag-timestamp sequence.

(c) Extracting the public key from the signa-
ture.

(d) Verifying the signature on the tag-
timestamp sequence using this key.

(e) Validating the certificates in the certificate
chain.

(f) Verifying that there is a chain of autho-
rization from an entry on the ACL to the
key from the signature, via the certificate
chain presented. The authorization chain
must authorize the client to perform the re-
quested operation.

If the request verifies, it is honored. If it does
not verify, it is denied and the server proxy re-
turns an error to the client proxy. This error is
returned whenever the client presents an authen-
ticated request that is denied.

The protocol can be viewed as a typical challenge-
response protocol. The server reply in step 2 of the
protocol is a challenge the server issues the client,
saying, “You are trying to access a protected file.
Prove to me that you have the credentials to perform
the operation you are requesting on the resource pro-
tected by this ACL.” The client uses the ACL to help
it produce a certificate chain, using the SPKI/SDSI
certificate chain discovery algorithm. It then sends
the certificate chain and signed request in a second
request to the server proxy. The signed request pro-
vides proof of authenticity, and the certificate chain
provides proof of authorization. The server attempts
to verify the second request, and if it succeeds, it
honors the request.

The timestamp in the tag-timestamp sequence
helps to protect against certain types of replay at-
tacks. For example, suppose the server logs requests

7In our prototype implementation, the server checks that
the timestamp in the client’s tag-timestamp sequence is within
five minutes of the server’s local time.

4.  Server verifies request.  If the request is
verified, it is honored.  If the request does not
verify, it is denied and an error is returned.

2.  Server verification fails.  ACL and tag are 
returned.

chain.  Client signs request.  Client sends
signed request with certificates.

3.  Client uses ACL and tag to generate certificate

Client Proxy Server Proxy
({tag, timestamp}    , certificate chain)

(requested resource / error)

(ACL, tag)

1.  Initial unauthenticated, unauthorized request

Ku

(request)

Figure 2: SPKI/SDSI Proxy to Proxy Access Control
Protocol

and suppose that this log is not disposed of properly.
If an adversary gains access to the logs, the times-
tamp prevents him from replaying requests found in
the log and gaining access to protected resources.8

4.2.1 Additional Security Considerations

The SPKI/SDSI protocol, as described, addresses the
issue of providing client access control. The protocol
does not ensure confidentiality, authenticate servers,
or provide protection against replay attacks from the
network.

The Secure Sockets Layer (SSL) protocol is the
most widely used security protocol today. The Trans-
port Layer Security (TLS) protocol is the successor
to SSL. Principal goals of SSL/TLS [17] include pro-
viding confidentiality and data integrity of traffic be-
tween the client and server, and providing authentica-
tion of the server. There is support for client authen-
tication, but client authentication is optional. The
SPKI/SDSI Access Control protocol can be layered
over a key-exchange protocol like TLS/SSL to pro-
vide additional security. TLS/SSL currently uses the
X.509 PKI to authenticate servers, but it could just as
well use SPKI/SDSI in a similar manner. In addition
to the features already stated, SSL/TLS also provides
protection against replay attacks from the network,
and protection against person-in-the-middle attacks.
With these considerations, the layering of the proto-
cols is shown in Figure 3. In the figure, ‘Application

8In order to use timestamps, the client’s clock and server’s
clock need to be fairly synchronized; SPKI/SDSI already
makes an assumption about fairly synchronized clocks when
validity time periods are specified in certificates. An alter-
native approach to using timestamps is to use nonces in the
protocol.
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SPKI/SDSI Access Control Protocol

Application Protocol

Key-Exchange Protocol with Server Authentication

TCP/IP

Figure 3: Example Layering of Protocols

Protocol’ refers to the standard communication pro-
tocol between the client and server proxies, without
security.

SSL/TLS authenticates the server proxy. However,
it does not indicate whether the server proxy is au-
thorized to accept the client’s request. For example,
it may be the case that the client proxy is requesting
to print a ‘top secret’ document, say, and only cer-
tain printers should be used to print ‘top secret’ doc-
uments. With SSL/TLS and the SPKI/SDSI Client
Access Control Protocol we have described so far, the
client proxy will know that the public key of the proxy
with which it is communicating is bound to a partic-
ular address, and the server proxy will know that the
client proxy is authorized to print to it. However,
the client proxy still will not know if the server proxy
is authorized to print ‘top secret’ documents. If it
sends the ‘top secret’ document to be printed, the
server proxy will accept the document and print it,
even though the document should not have been sent
to it in the first place.

To approach this problem, we propose extending
the SPKI/SDSI protocol so that the client requests
authorization from the server and the server proves to
the client that it is authorized to handle the client’s
request (before the client sends the document off to
be printed). To extend the protocol, the SPKI/SDSI
protocol described in Section 4.2 is run from the client
proxy to the server proxy, and then run in the reverse
direction, from the server proxy to the client proxy.
Thus, the client proxy will present a SPKI/SDSI cer-
tificate chain proving that it is authorized to per-
form its request, and the server proxy will present
a SPKI/SDSI certificate chain proving that it is au-
thorized to accept and perform the client’s request.
Again, if additional security is needed, the extended
protocol can be layered over SSL/TLS.

Note that the SPKI/SDSI Access Control Protocol
is an example of the end-to-end argument [22]. The
access control decisions are made in the uppermost
layer, involving only the client and the server.

5 Access Control and Autho-
rization in SPKI/SDSI

5.1 Naming Architecture

There are two types of certificates in SPKI/SDSI:
name certificates and authorization certificates.
Name certificates are described in this section, and
authorization certificates are described in Section 5.4.
A SPKI/SDSI name certificate defines a local name
in the certificate issuer’s local name space. A name
certificate consists of four fields:

issuer The public key that signs the certificate.

identifier An identifier is a single word over some
standard alphabet, such as Alice, Bob, Friends,
A, B. In this document, identifiers will be speci-
fied in typewriter font.

The identifier determines the local name that is
being defined. The name consists of the issuer’s
key and this identifier. A name that consists of
a single key followed by a single word is known
as a “local name” [4]. Because a name certificate
can only define a local name, each principal can
only define names within its own name space.

subject A subject can be a public key or a name
consisting of a single public key followed by one
or more identifiers. The public key in the subject
does not have to be the issuer’s key.

In a name certificate, the subject is the new
meaning of the local name being defined.

validity specification Normally, the validity spec-
ification is a time period during which a certifi-
cate is valid, assuming the signature verifies. Be-
yond this period, the certificate has expired and
should be renewed. The validity specification
usually takes the form (t1, t2), specifying that
the certificate is valid from time t1 to time t2, in-
clusive. The validity specification can also take
the form of an online check that is performed
to determine if the certificate is valid. An on-
line check specifies the address of a server to be
queried before the certificate can be considered
valid. The server would contain a list of revoked
certificates, and let the certificate verifier know
if the certificate has been revoked.

SPKI/SDSI name certificates bind local names to
public keys. Assuming each user has a single public-
private key pair, the name-to-key binding is a multi-
valued function: each name is bound to one or more
keys. A single name certificate can define a name in
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the issuer’s local name space to be a public key, an-
other name in his/her local name space, or a name in
another principal’s local name space. A name certifi-
cate that defines the local name K A to be the subject
S can be denoted K A −→ S,9 where K is the issuer’s
key.

Since each principal can issue name certificates,
each principal has its own local name space consisting
of the names it defines. SPKI/SDSI, thus, has a local
name space architecture which helps to make the in-
frastructure scalable. A user does not have to ensure
that the names he defines are unique in a global name
space; he can define names which are meaningful to
him, which he can easily remember and recognize.

A SPKI/SDSI group is typically a set of principals.
Each group has a name and a set of members. The
name is local to some principal, the “owner” of the
group, and he is the only one who can change the
group definition. A group definition may explicitly
reference the members of the group, or reference other
groups (which may even belong to someone else). To
define a group, a group owner issues to each group
member a name certificate defining the local name of
the group to be that member’s key or name. A group
owner can also add another principal’s group to his
group by issuing name certificates binding the name
of his group to the name of the other group.

Figure 4 gives an example of a SPKI/SDSI
group. In the example, Alice’s friends include
Bob (KB) and Carol (KC); she can add them
to her group friends by issuing certificate 1 to
Bob and certificate 2 to Carol. (She could have
achieved the same effect by issuing the certificates
KA friends −→ KA Bob and KA Bob −→ KB

to Bob, and KA friends −→ KA Carol and
KA Carol −→ KC to Carol.) Edward (KE) has
named his key KE Edward by issuing the certificate
KE Edward −→ KE . Alice adds Edward to her group
friends by issuing certificate 3 to him. Alice has a
sister, Fiona (KF ), and she considers all of Fiona’s
friends to be her friends. She adds them to her group
by issuing certificate 4 to Fiona’s friends. Also, Bob’s
sister’s friends are Alice’s friends, and she issues cer-
tificate 5 to them (note that the name “KA B C D”
means KA’s B’s C’s D). In summary, with the cer-
tificates in Figure 4, KA friends in Alice’s local
name space is bound directly to the keys KB , KC ,
and indirectly to the keys referenced by KE Edward,
KF friends and KB sister friends.

Note that it is easy for a person to belong to multi-
ple groups. For example, suppose that, besides being

9The validity specification will, generally, not be crucial to
discussions here since any certificate which fails its validity
specification at the time it is being used should be ignored.

KA friends −→ KB (1)
KA friends −→ KC (2)
KA friends −→ KE Edward (3)
KA friends −→ KF friends (4)
KA friends −→ KB sister friends (5)

Figure 4: An example of a SPKI/SDSI group:
KA friends (Alice’s friends)

Alice’s friend, Bob is also a friend of George (KG) and
Harold (KH). George simply issues Bob the certifi-
cate KG friends −→ KB , and Harold issues him the
certificate KH friends −→ KB . With these certifi-
cates, and the certificate KA friends −→ KB issued
by Alice, Bob is a member of the groups KA friends,
KG friends, and KH friends.

The ability to define groups is one of the principal
notions of SPKI/SDSI. This feature facilitates easy
management of ACLs, as will be described in Sec-
tion 5.2. It also makes it easier and more intuitive
to define security policies. Because the names of the
groups are at the discretion of the owners, the groups’
names can be meaningful and intuitive. Security poli-
cies can be defined in terms of these groups, simpli-
fying the auditing of group definitions and ACLs.

5.2 Access Control Lists

SPKI/SDSI is primarily concerned with authorizing
principals to perform particular operations on pro-
tected resources. An administrator controls access to
a resource by setting up an ACL to protect it. A
principal (public key) makes a request to perform a
particular operation on the resource. Examples of re-
quests are a request to read a file, a request to login to
an account, or a request to turn on an appliance. In
these examples, the protected resources are the file,
account and appliance, respectively.

A SPKI/SDSI ACL consists of a list of entries.
Each entry specifies an operation or set of operations
that the subject is permitted to perform on the re-
source the ACL protects. Each entry in the ACL has
three fields:

subject The key or group (a key followed by one
or more identifiers) that is being permitted to
perform the operations in the tag.

tag This is the same as the tag described in Sec-
tion 4.2.

delegation bit If this bit is true, the entry’s subject
is allowed to authorize other principals to access
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the protected resource. If this bit is false, the
subject is not allowed to do so. In this case, each
principal requesting access to the resource must
either be the public key specified in the subject,
or be a member of the group specified in the
subject, before the request can be honored.

5.3 ACLs and Groups

If an administrator wishes to grant a set of principals
access to a number of resources, each protected by a
separate ACL, he can simply define a group and place
the group name on each ACL. The ACLs need only
be updated once. From then on, as new members join
the group, they are issued the relevant certificates and
are automatically authorized to access the protected
resources without the administrator having to update
the ACLs again. It is clear that using groups makes
it easier and more efficient to maintain and update
ACLs, since an explicit list of all the principals does
not have to be stored on each ACL.

In the example in Figure 4, if the group name
KA friends is specified in an entry on an ACL, then
KB , KC , and all the keys referenced by KE Edward,
KF friends and KB sister friends will automat-
ically be authorized to perform the operation(s) spec-
ified in that entry’s tag. Furthermore, and perhaps
more importantly, there can be a delayed definition of
the group. An administrator can add a group to one
or more ACLs without knowing the group’s members
beforehand. He can update the ACLs with an entry
for the group, and at some later time that is conve-
nient and appropriate, he can issue name certificates
adding principals to the group. He does not have to
know all the members of a group when he is setting
up his ACLs.

Note that an administrator is free to add any prin-
cipal’s group to his ACL. He is not restricted to just
adding his own groups (though he could just add his
own groups if he so desires). For example, the user
controlling KA could add groups KF friends and
KG friends to an ACL he maintains.

5.4 Authorization Certificates

A SPKI/SDSI authorization certificate grants a spe-
cific authorization from the certificate’s issuer to the
certificate’s subject. To keep the infrastructure sim-
ple, a single certificate cannot both define a name and
grant an authorization: i.e., each certificate is either
strictly a name certificate or an authorization certifi-
cate. A SPKI/SDSI authorization certificate consists
of five fields:

issuer The key that signs the certificate. The issuer
is the principal granting the specific authoriza-
tion.

subject The key or group (a key followed by one or
more identifiers) that is receiving the grant of
authorization.

tag This is the same as the tag described in Sec-
tion 4.2.

delegation bit This is the same as the delegation
bit described in Section 5.2.

validity specification This is the same as the va-
lidity specification described in Section 5.2..

An authorization certificate in which the issuer K
grants the authorization specified in tag T to sub-
ject S with the delegation bit set to true can be de-
noted as K 1

T−−−→ S 1 . If the delegation bit is set

to false, the certificate is denoted as K 1
T−−−→ S 0 .

SPKI/SDSI ACLs have similar syntax to SPKI/SDSI
authorization certificates. In fact, each entry of an
ACL can be considered to be an authorization cer-
tificate with the issuer being the owner of the ACL,
and the subject, tag and delegation bit being as spec-
ified in the entry. (It is assumed that the owner of the
ACL removes ACL entries when they are no longer
valid, and thus validity specifications in ACL entries
are optional.) Each entry on an ACL has the rep-
resentation Self 1

T−−−→ S 1 if the delegation bit is

true, and Self 1
T−−−→ S 0 if the delegation bit is

false. The special designator “Self ” represents the
owner of the ACL.

Thus, for example, if KA is Alice’s public key, and
KB is Bob’s public key, Alice can issue an autho-
rization certificate, KA 1

T1−−−→ KB 1 granting Bob
the authorization specified in T1 with the permission
to delegate this authorization. As another example,
Self 1

T2−−−→ KB friends 0 represents an ACL en-
try with the group KB friends on it. The members
of this group are allowed to perform the operations
specified in T2, but are not allowed to grant this au-
thority to anyone else.

5.5 Delegation

An important feature of SPKI/SDSI is the ability to
delegate authorizations. One way of thinking of an
authorization certificate is that it transfers or propa-
gates a specific authorization from the issuer to the
subject. If the delegation bit is set in the certificate,
the subject is allowed to continue propagating this
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authorization, or some subset of it, to other princi-
pals, by issuing authorization certificates to them. If
the subject, in turn, sets the delegation bit on its
certificates to true, the principals to whom it is prop-
agating the authorization will also be able to issue
authorization certificates granting new principals the
authorization, and so on.

When security decisions are made, it is an indi-
vidual’s characteristics that are used to determine
whether he should be issued access credentials for
a protected resource. However, sometimes the en-
tity responsible for protecting a resource may prefer
to delegate the responsibility for making this deter-
mination. For example, in a research laboratory, it
may be the sys-admin who is responsible for setting
up and maintaining ACLs on the laboratory’s color
printers. Instead of having every new graduate stu-
dent come to him for access credentials, he may want
to delegate this responsibility to one or more floor
managers. With SPKI/SDSI, the sys-admin can del-
egate to the floor managers the authority to deter-
mine who is allowed to access the color printers. The
sys-admin must trust the floor managers to correctly
identify new graduate students before issuing them
certificates.

Figure 5 gives an example. In the exam-
ple, the sys-admin (KSys−Admin) adds the group
KSys−Admin Floor Managers to various ACLs and
sets the delegation bit to true. TColor Printers repre-
sents the authority to access color printers. The ACL
entry added by the sys-admin is specified in ‘certifi-
cate’ 6. He then issues a name certificate adding a
particular floor manager’s key, KFlr1 Mngr, to the
group KSys−Admin Floor Managers (certificate 7).
This floor manager (for floor 1) has, thus, been dele-
gated the authority to decide who should access the
color printers, since the delegation bit in the ACL en-
try is true. (Of course, the sys-admin can still autho-
rize people to access the color printers as well, but he
may decide to leave this job exclusively to floor man-
agers.) Clearly, the sys-admin can do this for other
floor managers as well.

The first floor manager can issue authorization cer-
tificates to graduate students on his floor. He may
also set the delegation bit in their certificates to true,
if he wishes to allow the graduate students to au-
thorize others to access the printers. In this case,
these graduate students authorize new students after
authenticating and validating them. Suppose a par-
ticular senior graduate student’s key is KSenior Grad.
The floor manager can authorize him by issuing him
certificate 8. The senior graduate student can au-
thorize a junior graduate student (KJunior Grad) by
issuing him certificate 9. The junior graduate student

Self 1
TColor P rinter−−−−−−−−−−−−→ KSys−AdminFloor Managers 1 (6)

KSys−AdminFloor Managers −→ KF lr1 Mngr (7)

KF lr1 Mngr 1
TColor P rinter−−−−−−−−−−−−→ KSenior Grad 1 (8)

KSenior Grad 1
TColor P rinter−−−−−−−−−−−−→ KJunior Grad 0 (9)

Figure 5: An example of delegation using SPKI/SDSI
certificates

will not be able to authorize other students to print
to the color printers since the delegation bit in his
certificate is false.

When a user is issued his certificates, he should be
given all of the certificates necessary to establish the
chain of authorization from the particular ACL entry
to his public key. In the example described in Fig-
ure 5, the floor manager should be given certificate 7;
the senior graduate student certificates 7 and 8; and
the junior graduate student certificates 7, 8 and 9.
In each case, the user will need to use the certifi-
cates to establish the authorization chain from the
KSys−Admin Floor Managers group to his key.

5.6 Certificate Guarantee

The SPKI/SDSI certificate guarantee is: “This cer-
tificate is good until the expiration date. Period.”
[19]. SPKI/SDSI advocates using reasonably short
validity periods inside certificates. SPKI/SDSI also
advocates using certificates of health [19] to deal with
the specific issue of the requestor’s key being compro-
mised.

As with any PKI, issuers must take care when
issuing certificates. If a certificate has been incor-
rectly issued, there should only be a reasonably short
period of time in which it can potentially be used.
SPKI/SDSI facilitates the use of short validity pe-
riods since, in any particular certificate chain, the
function of the chain can be easily partitioned among
the certificates. Imagine that Alice wants to attend a
particular one of Charlie’s online team meetings and
the meeting is protected by an ACL with only one
entry: KC Team. Charlie issues Alice a name cer-
tificate that binds her name in his local name space
to her key (KC Alice −→ KA), and another name
certificate that adds KC Alice to Charlie’s team
(KC Team −→ KC Alice). Charlie allows Alice to
attend only a particular meeting by issuing the latter
certificate with a validity period set for exactly the
time of that meeting.

Conventional PKIs handle key compromise with
the same mechanism that they handle certificate
revocation. They use Certificate Revocation Lists
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(CRLs). A CRL is issued by a certificate authority,
and is a blacklist: any certificate on a CRL is invalid.

SPKI/SDSI treats key compromise as a separate is-
sue from certificate revocation. It argues that “certifi-
cates should not be revoked merely because the key is
compromised. Rather, the signer should present sep-
arate evidence to the acceptor that the key has not
been compromised. Since, in this framework, the no-
compromise evidence is separate, the ordinary certifi-
cates can continue to be ‘valid’ even though the key
has been compromised.” [19] SPKI/SDSI suggests
using a new kind of agent, called a key compromise
agent (KCA), or a suicide bureau (SB). Multiple SBs
cooperate to serve SPKI/SDSI communities. When
Alice creates her key pair, she also signs a personal
suicide note which she protects in a private place,
and also registers her public key with an SB. In the
unlikely event that her key is compromised or lost,
she sends her suicide note to the SB. The SB broad-
casts this note on the SB network so that other SBs
are made aware of the compromised key.

If Alice’s key has not been compromised or lost,
she can ask an SB for a certificate of health, cer-
tifying that she believes that she is the only entity
controlling her private key. When Alice makes a re-
quest signed with her key and accompanied with a
chain of certificates, the server proxy does not need
to use a CRL to see if her key has been compromised.
It can simply require that Alice present a certificate
of health along with her request. This certificate will
include the time and date that it was issued, and the
server proxy can demand a more recent health cer-
tificate before honoring the request.

Note that in comparing certificates of health with
CRLs, a certificate of health is essentially a positive
statement, whereas a CRL is a negative statement.
A certificate of health states that a given key has not
been compromised; a CRL states that all keys for
which the CRL issuer has issued certificates, except
the ones on this list, have not been compromised.
Negative statements are much harder to prove correct
than positive statements.

6 Related Work

Jini [25] network technology from Sun Microsystems
centers around the idea of federation building. Jini
avoids the use of proxies by assuming that all devices
and services in the system will run the Java Virtual
Machine. The SIESTA Project [8] at the Helsinki
University of Technology has succeeded in building a
framework for integrating Jini and SPKI/SDSI. Their
implementation has some latency concerns, however,
when new authorizations are granted. UC Berke-

KLCS LCS −→ KTheory Theory (10)

KLCS LCS −→ KAI AI (11)

KTheoryTheory −→ KAllison (12)

Self 1
Tprint to Beta−−−−−−−−−−→ KAI Sys−Admin 1 (13)

KAI Sys−Admin 1
Tprint to Beta−−−−−−−−−−→ KAI AI 0 (14)

KAI AI −→ KAllison (15)

Figure 6: Example scenario.

ley’s Ninja project [26] uses the Service Discovery
Service [5] to securely perform resource discovery in
a wide-area network. Other related projects include
Hewlett-Packard’s CoolTown [9], IBM’s TSpaces [11]
and University of Washington’s Portolano [28].

6.1 Other projects using SPKI/SDSI

Other projects using SPKI/SDSI include Hewlett-
Packard’s e-Speak product [10], Intel’s CDSA release
[12], and Berkeley’s OceanStore project [27]. HP’s
eSpeak uses SPKI/SDSI certificates for specifying
and delegating authorizations. Intel’s CDSA release,
which is open-source, includes a SPKI/SDSI service
provider for creating certificates, and a module (Au-
thCompute) for performing authorization computa-
tions. OceanStore uses SPKI/SDSI names in their
naming architecture.

7 Evaluation

The scenario described in this section is illustrated
in Figure 6. Imagine that the Laboratory for Com-
puter Science (LCS) (KLCS) includes two groups:
Theory (KTheory Theory) and Artificial Intelligence
(KAI AI). Allison (KAllison) is a student in the The-
ory group. The AI group has a printer, Beta, to which
only members of the AI group are allowed to print.

Certificates indicating that the AI and Theory
groups are both groups within LCS are published on
a server accessible from any LCS workstation (certifi-
cates 10 and 11). Allison possesses a certificate, with
a reasonably short validity period, that proves that
she is a member of the Theory group (certificate 12).
Beta has an ACL entry allowing members of the AI
group to print to it (‘certificate’ 13).

Allison now decides to transfer from the Theory
group to the AI group. Certificate 12 stops being re-
newed and soon expires. When Allison first moves to
the AI group and attempts to print a document on
Beta (using the protocol from Figure 2), her request
is denied. Since Allison does not have permission
to print to Beta, her print request fails at step 3 of
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Protocol step Timing analysis Approx CPU time
Cert chain discovery The worst case is O(n3l), where n = num-

ber of certs, and l = length of longest sub-
ject. However, the expected time is O(nl).

330ms, with n = 2 and l = 2.

Chain validation The worst case is O(n), where n = num-
ber of certs.

200ms, with n = 2.

Table 1: Proxy-to-Proxy Protocol analysis.

Figure 2. Beta responds to Allison with an error in-
dicating that she should contact a AI professor (who
controls the key, KAI). The AI professor generates a
new certificate, certificate 15, and gives Allison cer-
tificates 14 and 15 (certificate 14 was issued by the AI
sys-admin to the AI professor). Allison re-issues her
print command, and this time, the print job succeeds.

7.1 SPKI/SDSI Evaluation

The system described in this paper, integrating
SPKI/SDSI with a resource discovery and commu-
nication system, is advantageous for a number of rea-
sons:

• ACLs can be created once, and then rarely re-
quire modification.

• Few new certificates need to be generated to
grant access privileges to a user. In the example
from Figure 6, only one new certificate had to be
generated, and no ACLs were changed.

• Short certificate validity periods are used for cer-
tificate revocation to eliminate the need for inef-
ficient mechanisms such as certificate revocation
lists.

• The elegant delegation system allows for efficient
resource administration. In the example from
Figure 6, the AI sys-admin maintains the ACL,
but the AI professor determines the members of
the AI group.

The protocol described in Section 4 is efficient.
The first two steps of the protocol are a standard
request/response pair; no cryptography is required.
The significant steps in the protocol are step 3, in
which a certificate chain is formed, and step 4, where
the chain is verified. Table 1 shows analyses of these
two steps. The paper on Certificate Chain Discov-
ery in SPKI/SDSI [4] should be referred to for a dis-
cussion of the timing analyses. The CPU times are
approximate times measured on a Sun Microsystems
Ultra-1 running SunOS 5.7.

8 Conclusion

We believe that the trends in pervasive computing
are increasing the diversity and heterogeneity of net-
works and their constituent devices. Developing secu-
rity protocols that can handle diverse, mobile devices
networked in various ways represents a major chal-
lenge. In this paper, we have taken a first step to-
ward meeting this challenge by observing the need for
multiple security protocols, each with different char-
acteristics and computational requirements. While
we have described a prototype system with two dif-
ferent protocols, other protocols could be included if
deemed necessary.

Our main focus in this paper was the proxy-
to-proxy security protocol which is based on
SPKI/SDSI. Using this protocol facilitates a high de-
gree of security, while providing flexibility in system
administration. Further, device mobility, varying de-
vice lifetimes, and other dynamic changes to the net-
work can be handled without compromising system
security.
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A Appendix: Device-to-Proxy
Protocol for Wireless De-
vices

A.1 Protocol Design

Wireless communication between a device and its
proxy is handled by a gateway that translates packe-
tized RF signals into UDP/IP packets. The gateway
routes the UDP/IP packets over the network to the
proxy. The gateway also performs the reverse func-
tion, converting UDP/IP packets from the proxy into
RF packets and transmitting them to the device. Fig-
ure 7 is an overview of the design. This figure shows
a proxy farm containing three proxies; one for each of
three separate devices. The figure also demonstrates
the use of multiple gateways.
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Figure 7: Device-to-Proxy Communication overview

A.2 Security

All communication between the device and the proxy
is encrypted and authenticated. RC5 [20] is used for
encryption, and the HMAC-MD5 [13, 18] algorithm
is used for authentication. Both algorithms use sym-
metric keys; the proxy and the device share a 128-bit
key.

Each packet is encrypted using an OpenSSL [16]-
based RC5 implementation. RC5 is a block cipher,
which means it is typically used to encrypt 8-byte
blocks of data. However, by implementing it using
output feedback (OFB) mode, it can be used as a
stream cipher. Additionally, by using the OFB mode,
only the encryption routine of RC5 is needed, and not
the decryption routine. This reduces the software
footprint on the device.

HMAC with the MD5 hash function produces a 16-
byte message authentication code (MAC). The eight
most significant bytes of the MAC are appended to
every packet transmitted to and from the device.
This reduces the overhead on each packet, but al-
lows an attacker to have to guess fewer bits to forge
a MAC. We feel this is a reasonable tradeoff between
bandwidth and security, since the range of the RF is
less than 100 feet.

A.3 Related work in Device to Proxy
Communication

There are many existing technologies that connect
devices for automation purposes. Many of these tech-
nologies, however, do not focus on the security of the
devices at all, or they require the ability to implement
complex security algorithms.

The Resurrecting Duckling is a security model for
ad-hoc wireless networks [24, 23]. In this model, when
devices begin their lives, they must be “imprinted”
before they can be used. A master (the mother duck)
imprints a device (the duckling) by being the first one

to communicate with it. After imprinting, a device
only listens to its master. During the process of im-
printing, the master is placed in physical contact with
the device and they share a secret key that is then
used for symmetric-key authentication and encryp-
tion. The master can also delegate the control of a
device to other devices so that control is not always
limited to just the master. A device can be “killed”
by its master then resurrected by a new one in order
for it to swap masters.

A.4 Evaluation of Device-to-Proxy
Protocol

In this section we evaluate the device-to-proxy pro-
tocol in terms of its memory and processing require-
ments.

Component Code Size Data Size
(Kb) (bytes)

Packet Processing 2.0 191
RF protocol 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0

Total 11.9 986

Table 2: Code and data size. The processor is an
Atmel ATMega103L; an 8-bit, 3 volt, CPU running
at 4Mhz that uses the Atmel AVR instruction set. It
has 128Kb of Flash memory, 2Kb of RAM, and 512
bytes of EEPROM.

Memory Requirements
Table 2 breaks down the memory requirements for
various software components. The code size repre-
sents memory used in Flash, and data size represents
memory used in RAM. The protocol requires approx-
imately 12Kb of code space and 1Kb of data space.
The code size we have attained through assembly op-
timization is small enough that it can be incorporated
into virtually any device.

Function Time (ms) Clock Cycles

RC5 encrypt/
decrypt (n bytes) 0.163n + 0.552 652n + 2208
HMAC-MD5
up to 56 bytes 11.48 45,920

Table 3: Encryption and authentication performance.

Processing Requirements
Table 3 breaks down the approximate time it takes for
each algorithm to run. The low-end Atmel processor
is able to perform encryption and authentication in
≈ 14ms because of software optimizations.
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