
Scaling Theory and Machine Abstractions
Martha A. Kim
September 2013

Scaling Theory

Metrics: Execution Time and Speedup

Parallelization is no different than any other program optimization.
Thus, when evaluating the quality of a particular parallelization, we
will use many of the same metrics that we use in the serial domain,
namely: execution time and speedup. Execution time is simply a
measure of the time required to complete a particular task. Speedup
compares the execution time of a program before and after optimiza-
tion. An optimization’s speedup is simply the ratio of the runtime
before optimization to the runtime afterwards:

Speedup =
Runtimeinitial

Runtimeoptimized
(1)

For example, an optimization that offers a speedup of two will
cause the program to run twice as fast.

Strong and Weak Scaling

A parallel program’s scalability quantifies how execution time (or
speedup) relates to the number of processors executing the program.
While you already have some intuition about what it means for a
program’s performance to scale, we will formalize it here.

Let time(p, x) be the time required by p processors to solve a prob-
lem of size x. We can then define the parallel speedup as before. On
a problem of size x with p processors, the speedup is:

speedup(p, x) =
time(1, x)
time(p, x)

(2)

Measuring such speedups, where an increasing number of pro-
cessors are applied to fixed-size problem, is called strong scaling. By
contrast, weak scaling measures speedups assuming a fixed problem size
per processor:

speedup(p, x × p) =
time(1, x)

time(p, x × p)
(3)

Demonstrating strong scaling requires solving a fixed problem
size faster and faster, while demonstrating weak scaling requires
solving an increasing problem size within a fixed time budget. As



scaling theory and machine abstractions 2

E
x
e
c
u
t
i
o
n
 
T
i
m
e

Number of Processors (p)

Strong
Weak

 1

S
p
e
e
d
u
p

Number of Processors (p)

Strong
Weak

Figure 1: Ideal scaling patterns for
strong and weak scaling.

their names imply, demonstrating strong scaling is typically more
challenging than demonstrating weak scaling.

Amdahl’s Law

Amdahl’s Law, originally articulated by Gene Amdahl in 1967
1, 1 Gene M. Amdahl. Validity of the

single processor approach to achieving
large scale computing capabilities.
pages 79–81, 2000

provides an upper bound on the speedup to be expected from a
particular optimization. Let parallelization accelerate some fraction
of a program’s total runtime (ParWork) by a factor of, at most, P.
Amdahl’s Law states that the maximum overall speedup is:

Speedup =
1

(1 − ParWork) + ParWork
P

(4)

The key consequence of Amdahl’s Law is that the overall speedup
of an optimization is limited by the non-optimizable portion of an applica-
tion’s execution time (i.e., the serial work, or 1 − ParWork).

Non − Optimizable (1 − ParWork = 0.5) Optimizable (ParWork)

Optimized 5×

Optimized 10×

Figure 2: Amdahl’s Law states that
overall speedups are limited by the
non-optimized proportion of an ap-
plication’s runtime. If half of an ap-
plication’s execution is not-optimized
(shown in red), arbitrary optimization
of the remainder (in green) results in
speedups of at most 2.

In the context of parallelization, serial work quickly dashes hopes
of demonstrating strong scaling. 2 2 For an exploration of Amdahl’s

implications for multicore architectures,
see:

Mark D. Hill and Michael R. Marty.
Amdahl’s law in the multicore era.
IEEE Computer, July 2008. URL http://

www.cs.wisc.edu/multifacet/papers/

ieeecomputer08_amdahl_multicore.pdf

Gustafson’s Law

Whereas Amdahl’s Law assumes a fixed problem size, Gustafson’s
Law, stated by John L. Gustafson in 1988

3, bounds speedup if the
3 John L. Gustafson. Reevaluating
amdahl’s law. Commun. ACM, 31(5):
532–533, 1988. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/42411.42415

problem size is allowed to increase. We derive Gustafson’s Law here.
Let us first define RuntimeP to be a program’s runtime on a par-

allel computer with P processors with the available parallel work
divided evenly amongst processors:

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf


scaling theory and machine abstractions 3

Figure 3: Amdahl’s projected speedups
for different proportions of serial work.
Graph credit: Wikipedia

SerWork ParWork

RuntimeP = SerWork + ParWork = 1

If instead we had only one processor, the runtime would be:

Runtime1 = SerWork + (P × ParWork)

Speedup is, as before, the ratio of these two terms:

Speedup =
Runtime1

RuntimeP
(5)

=
SerWork + P × ParWork

1
(6)

= SerWork + P × (1 − SerWork) (7)

Note that using this formulation, speedup is not limited by the
proportion of serial work (SerWork) in the program. What Gustafson’s
Law observes is that for many problems, parallelism grows with the
problem size, and the problem size grows with time.

Also note the parallels between Amdahl’s and Gustafson’s laws
and strong and weak scaling. Whereas Amdahl’s Law assumed a



scaling theory and machine abstractions 4

strong scaling setup (i.e., constant problem size in decreasing time),
Gustafson’s Law assumes a weak scaling setup (i.e., increasing prob-
lem size in fixed time).

Machine Models

In order to write high-performance parallel code, a programmer must
understand something of the structure of the parallel computer that
will execute it. For this reason, it is essential that some aspects of the
machine be exposed to the programmer. However, it is equally essen-
tial to balance these specifics against the need for a simple abstraction
and code portability.

How much of the details of the machine are exposed to the pro-
grammer (and proportionally how much machine-specific optimiza-
tion can occur) will depend on the purpose of the program. If an
application is being written for a specific computer or supercomputer
or gaming platform, for example, machine-specific optimization can
yield critical performance benefits. However, if a code is intended to
be portable, there is no use in over-optimizing it for one machine.

Machine abstractions

The RAM model The Random Access Machine (RAM) or von Neu-
mann model is an abstraction of a sequential computer. This com-
puter consists of an instruction execution unit and an unbounded
memory containing both program data and program instructions.
In the simplified world of the model, any location in memory can
be read to or written from in unit time. (This is the reason for the
“random access” name.) This model is so familiar that we hardly
even think of its being a model. However, it allows programmers
to reason about performance via a simple instruction count. In this
model, the more instructions executed, the longer a program will
take. In practice, of course, the execution time depends not only on
intsruction count, but on the size of caches (dictating how frequently
a program needs to go to memory), the size of physical memory (and
how frequently page faults occur), what other programs are contend-
ing for these resources, and so on. However, to a first order, the RAM
model’s instruction count gives a pretty good approximation of the
quality of an algorithm.

The PRAM model Given the value of the RAM model, it is only natu-
ral to try to develop an analogous model for use modeling a parallel
computer. The PRAM (for parallel RAM) model is an attempt to do
just that. The PRAM consists of an unspecified number of instruction



scaling theory and machine abstractions 5

execution units connected to a single, unbounded shared memory.
This natural extension has been very useful for theoretically ana-
lyzing the limits of parallel algorithms, but it has not turned out as
well on the practical front. For programmers, the PRAM model fails
to accurately capture memory behavior. While the simplification of
memory behavior was one of the key strengths of the RAM model,
the PRAM model has gone too far in its memory simplification.
PRAM fails to capture the fact that memory in a parallel architec-
ture does not have uniform unit access time. It is significantly faster
for an execution unit to read/write data that is nearby in memory
than it is farther away, but the PRAM model represents all memory as
being equidistant from the execution units. The more execution units
present in the parallel system, the bigger this drawback becomes.

The CTA model The Candidate Type Architecture (CTA) corrects the
drawbacks of PRAM by explicitly distinguishing the fast local mem-
ory accesses from the slower remote accesses. Like the PRAM, the
CTA consists of an unspecified number of instruction execution units.
However, unlike the PRAM, each of these units also has a piece of
the system memory connected directly to it. Multiple of these exe-
cution/memory pairs are then connected via an interconnect. In the
CTA, accesses to a data element in memory from the conjoined exe-
cution unit are fast (having unit time), while accesses from a remote
execution unit are slower (requiring λ units of time).

As a result of this, Calvin Lin and Larry Snyder articulate the “lo-
cality rule” as follows: “Fast programs tend to maximize the number
of local memory references and minimize the number of non-local
memory references” 4. 4 Calvin Lin and Lawrence Snyder.

Principles of Parallel Programming.
Addison Wesley, first edition, 2009

While the CTA is slightly more complex than the PRAM, it still
represents an aggressively simplified view of a machine’s architec-
ture. For example, note that the CTA says nothing about the topology
of the interconnect. While in practice, the interconnect topology will
determine the “nearness” of data to a given processor, the CTA’s
simplified, two-teir system of “here” and “not-here” (for local and re-
mote data respectively) is sufficient to capture the lion’s share of data
locality. Another detail that the CTA does not specify is the memory
referencing mechanism, be it shared memory, 1-sided communication
or message passing.

Shared memory: A natural extension of sequential computers, shared
memory represents a single, coherent memory image to multiple
threads. This style of memory reference is thought to be easy to
write, but difficult to debug for functionality and performance. These
latter drawbacks come because shared memory makes it easy to



scaling theory and machine abstractions 6

introduce race conditions and to unknowingly create non-local refer-
ences thereby hurting performance.

1-sided communication: One-sided communication is a relaxation of
shared memory where all threads can access a shared address space,
but there is no effort to keep the memory coherent. This change sim-
plifies the hardware by removing the need for coherence support, but
is harder on the programmer who now must contend with different
accesses to the same variable yielding different results.

Message passing: Finally, message passing offers no illusion of a
shared address space. Instead processors can access only their local
data. Should a processor require non-local data, messages are used to
explicitly send data from one processor’s memory to another.

References

Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. pages 79–81, 2000.

John L. Gustafson. Reevaluating amdahl’s law. Com-
mun. ACM, 31(5):532–533, 1988. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/42411.42415.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. IEEE Computer, July 2008. URL http://www.cs.wisc.edu/

multifacet/papers/ieeecomputer08_amdahl_multicore.pdf.

Calvin Lin and Lawrence Snyder. Principles of Parallel Programming.
Addison Wesley, first edition, 2009.

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf

	Scaling Theory
	Machine Models

