
Multi-place X10 programs (v 0.1)
Vijay Saraswat

1 Introduction

Quick references.

• Read Chapter 13 (Places) in [SBP+].

• Familiarize yourself with the APIs in the following standard libraries.
In x10.lang, look at Place, PlaceGroup. In x10.util look at Team.
In x10.array, look at Dist* classes. Look at the implementation of
the x10.array classes. It is not difficult to design your own distributed
array data-structures, with the appropriate distributions.

• In the X10 SVN (on sourceforge) look in the courses / pppp2013

repository. AllReduceTeams.x10 shows how to use DistArray_Unique.
NQueensDist shows the collecting finish idiom, working across mul-
tiple places.

• Example multi-place programs that run at scale: In the benchmarks /
PERCS directory:

STREAM / Stream.x10: a simple program measuring bandwidth from
the memory system.

KMEANS/KMeans.x10: implements an interative multi-place algo-
rithm for computing K clusters for a given set of data-points.

FT/FTNew.x10: implements a multi-place FFT algorithm, using three
AllToAll transpositions.

LU/LUNB.x10: Implements LU decomposition of a matrix.

GLB-UTS-SSCA2: This implements the “global load balancing” frame-
work. This is a library that lets you specify tree-structured tasks are
look at glb/GlobalLoadBalancer.x10, bcg/BCG.x10 and uts/UTS.x10.

• Many sections in “A Brief introduction to X10” (see course website)
are relevant. Specificaly, Section 4 (the X10 Performance Model) and
Part II (Programming Examples). In Part II, KMeans is covered in
Section 6.3, FU in 6.4 and LU in 6.5.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 1 of 12



There are two fundemantal reasons to go to multiple places. The data may be
much larger than can fit into one place. And/or the amount of computation
to be performed may be significantly higher, hence more cores (hundreds,
thousdans, . . . ) will help.

The fundamental problem in going to multiple places is that the program-
mer has to be aware of locality. The latency and bandwidth of data access
changes dramatically when one goes off-place. Latency refers to the delay
between issuing a memory access and obtaining a value. Bandwidth refers
to the total amount of data that can be transferred in unit time from the
destination to the processing unit. X10 does not attempt to deal “silently”
with these latency and bandwidth disparities – instead it surfaces these is-
sues into the programming model by introducing a notion of places. A place
has data (a heap) and multiple activitiies that may operate on that data. A
single computation may run over multiple (hundreds, thousands) of places.
It is the programmer’s responsibility to divide up the data among the given
places and take into account latency and bandwidth issues when writing code
to operate on this data.

2 At statements and expressions

The fundamental control construct available in X10 for multi-place compu-
tation is the at construct.

An at statement takes the form at (p) S, where p is an expression that
evaluates to a place, and S is a statement. Such code may be executed at
any place q (q may be the same as p).

S is permitted to contain occurences of variables defined outside the scope
of S. At runtime, the entire graph G of objects accessible from the free
variables of S is serialized into a buffer, transported to p, deserialized there
to reconstruct an object graph G′ isomorphic to G, the free variables of S are
bound to the corresponding objects in G′, and then S is executed in a separate
activity. Once S terminates locally, control returns to q and continues with
the next statement after the at(p) S.

Note that at p, S may spawn multiple activities. These will be controlled
by the finish controlling the at(p) S, as is usual for local termination.
Note further that S may throw an exception. In this case at(p)S will throw
the same exception. Thus exception throwing can cross boundaries.

An at expression takes the form at (p) {e}: it goes to p, evaluates e,
and returns the value.

Note: A primary mistake programmers make is to refer to too much state
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in S. All state referenced in S will be copied over. You can set run-time
flags to tell you how many bytes are shipped over on an at. This can help
you catch the problem. Also in X10DT if you move the cursor over an at

statement, you will be shown the variable which are captured within the at.
This can be very valuable in performance debugging.

2.1 Place failure and Resilient X10

Long running jobs running in a commodity cluster may fail because a place
fails – either a disk fails, or there is a network outage, or, sometimes, there
is planned or unplanned maintenace of the cluster.

An X10 computation will fail if any place fails. The X10 launcher moni-
tors each process (place) that is launched in the computation. If it is unable
to determine that a place is up, it will send signals to all remaining places to
tear them down, thus aborting the computation.

In recent work, the X10 team has developed a notion of Resilient X10 [?].
A place is permitted to fail without bringing down the entire computation.
Instead, the data at the failed place q and the activities operating on it, are
lost. Any activity a launched by code at q at other places r continue to
run, and are now controlled by the “closest” (in dynamic scope) synchronous
statement (e.g. finish) not running at q that contains a. X10 provides
a “Happens Before Invariance” guarantee: the happens before relation be-
tween steps that remain after a place failure is the same as the relation for the
original program. This considerably simplifies programming resilient compu-
tations in X10. Any attempt made by a place p to execute an at results in
a DeadPlaceException that may be caught by user code.

Resilient X10 has not yet been released, the implementation is under
development at x10.sf.net and may be downloaded from SVN.

3 Global shared state

3.1 x10.lang.GlobalRef

3.2 x10.lang.PlaceLocalHandle

4 x10.lang.PlaceGroup

4.1 SPMD computations

Many programs can be parallelized in a data parallel fashion.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 3 of 12



5 Data distribution

Need to understand patterns of communication and computation to determine
how best to partition data.

Commonly, arrays. Multi-dimensional arrays.

5.1 Row block

5.2 Block cyclic distribution

6 FT

7 LU

8 The GLB library

The GLB (Global Load-Balancing) framework is applicable for tree-structured
problems.

Such problems can be characterized thus. There is an initial bag (mul-
tiset) of tasks (may be of size one). A task usually has a small amount of
associated state, but is permitted to access (immutable) “reference state”
that can be replicated across all places. Consequently, tasks are relocatable:
they can be executed at any place.

Tasks can be executed. Executing a task may only involve local, self-
contained work (no communication). During execution, a task is permitted
to create zero or more tasks, and produce a result of a given (pre-specified)
type Z. The user is required to specify a reduction operator of type Z.

The GLB framework is responsible for distributing the generated collec-
tion of tasks across all nodes. Once no more tasks are left to be executed,
the single value of type Z (obtained by reducing the results produced by all
tasks) is returned.

Since the execution of each task depends only on the state of the task
(and on immutable external state), the set of results produced on execution
will be the same from one run to another, regardless of how the tasks are dis-
tributed across places. Since the user supplied reduction operator is assumed
to be associative and commutative, the result of execution of the problem is
determinate. Thus GLB is a determinate application library that requires
the user to provide a few sequential pieces of code and handles concurrency,
distribution and communication automatically.

The GLB framework is applicable to a wide variety of tasks. For a simple
example, consider the problem of computing the n’th Fibonacci number in
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the naive recursive way. Here the state of the task can be summarized by
just one number (long), i.e. n. Execution of the task yields either a result
(for n < 2), or two tasks (for n − 1 and n − 2). The results from all tasks
need to be reduced through arithmetic addition.

All state space search algorithms from AI fall in this category. Such
algorithms are characterized by a space of states, an initial state, and a
generator function which given a state generates zero or more states. The
task is to enumerate all states (perhaps with a cutoff), apply some function,
and some up the results. An example of such an application is the famous
N -Queens problem.

Another example of this problem is the Unbalanced Tree Search (UTS)
benchmark. Indeed, it was our attempt to solve the UTS problem that led
to the creation of the GLB framework.

8.1 The GLB API

The GLB framework works by distributing bags of tasks from busy places
to idle places automatically. In special cases, the application programmer
may improve overall performance by specifying a custom implementation
of TaskBag. The implementation must support a split operation which
permits the current task bag to be split into two (so the other piece can be
distributed to another place) and a merge operation which permits incoming
work to be included in the task bag at the current place.

Thus in summary, the application programmer provides the following
pieces of code:

1. A TaskFrame[Z] class. This class is expected to maintain a reference to
a TaskBag (the local task bag). The user must supply implementations
for the following methods:

(a) getTaskBag():TaskBag: should return the local task bag.

(b) getReducer():Reducible[Z]: should return the reducer associ-
ated with this job.

(c) getResult():Z: This returns the accumulated result for all tasks
that were completed at this place.

(d) initTask():void: This is called once, when this task frame is
set up at the current place. It should initialize the local task bag
appropriately.
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If the problem has a single root task, then the user should choose
one place (e.g. place zero) as the place at which to add this task.
If the problem has many initial tasks then more than one place
may start out with non-empty task bags.

(e) runAtMostNTasks(n:Long):Boolean: This method must run at
most n tasks from the task bag at the current place, and return
true if there is still work left to do in the local task bag. During
the execution of this method, user code may manipulate the local
task bag freely (removing and adding tasks to it). The framework
guarantees that no other worker will concurrently access the task
bag. For tasks which have completed and produced a result of type
Z, the method must accumulate the result in local state, using the
supplied reducer.

2. Optionally, a custom class extending TaskBag and appropriately im-
plementing split and merge methods.

The framework is invoked in a fairly simple way:

val r = new GlobalLoadBalancer[T](parameters);

val result = g.run(()=> new TaskFrameImp[T]());

First an instance of GlobalLoadBalancer is created with a specification of
parameters for controlling various aspects of global load-balancing. Next
the framework is invoked, supplying a function that generates an instance of
the user-specified TaskFrame class, with the appropriate result type. This
method returns the result of running the user’s problem, balanced across all
places.

The code in Figure 1 illustrates the use of this framework with a simple
Fibonacci computation.

9 UTS

9.1 UTS description

The Unbalanced Tree Search benchmark measures the rate of traversal of a
tree generated on the fly using a splittable random number generator. Below,
to fix discussion, assume we are working with a fixed geometric law for the
random number generator with branching factor b0 = 4, seed r = 19, and tree
depth d varying from 13 to 20 depending on core counts and architecture.
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package fib;

import glb.TaskBag;

import glb.TaskFrame;

import glb.GlobalLoadBalancer;

import glb.ArrayListTaskBag;

import glb.GLBParameters;

public class Fib(n:Long) {

class FibFrame extends TaskFrame[Long] {

val bag = new ArrayListTaskBag[Long]();

val reducer = Reducible.SumReducer[Long]();

var result:Long=0;

public def getTaskBag()=bag;

public def getReducer()=reducer;

public def getResult()= result;

public def initTask() {

if (here.id==0) bag.bag().add(n);

}

public def runAtMostNTasks(n:Long) {

val b = bag.bag();

for (1..n) {

if (b.size()<=0) break;

val x = b.removeLast(); // constant time

if (x < 2) result += x;

else {

b.add(x-1); // constant time

b.add(x-2);

}

}

return b.size()>0;

}

}

public def run():Long {

val g = new GlobalLoadBalancer[Long](GLBParameters.Default);

return g.run(()=>new FibFrame());

}

static def fib(n:Long):Long=n<2? n: fib(n-1)+fib(n-2);

public static def main(args:Rail[String]) {

val N = args.size < 1 ? 10 : Long.parseLong(args(0));

val result = new Fib(N).run();

Console.OUT.println("fib(" + N + ")="

+ result + " (actual=" + fib(N)+")");

}

}
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The nodes in a geometric tree have a branching factor that follows
a geometric distribution with an expected value that is specified
by the parameter b0 > 1. The parameter d specifies its maximum
depth cut-off, beyond which the tree is not allowed to grow ...
The expected size of these trees is (b0)

d, but since the geometric
distribution has a long tail, some nodes will have significantly
more than b0 children, yielding unbalanced trees.

The depth cut-off makes it possible to estimate the size of the trees and
shoot for a target execution time. To be fair, the distance from the root to a
particular node is never used in our benchmark implementation to predict the
size of a subtree. In other words, all nodes are treated equally, irrespective
of the current depth.

9.2 Design

The material in this section is excerpted from [?].
One common way to load balance is to use work-stealing. For shared

memory system this technique has been pioneered in the Cilk system. Each
worker maintains a double ended queue (deque) of tasks. When a worker
encounters a new task, it pushes its continuation onto the bottom of the
deque, and descends into the task. On completion of the task, it checks to
see if its deque has any work, if so it pops a task (from the bottom) and
continues with the work. Else (its deque is empty) it looks for work on other
workers’ deques. It randomly determines a victim worker, checks if its queue
is non-empty, and if so, pops a task from the top of the deque (the end
other than the one being operated on by the owner of the deque). If the
queue is empty, it guesses again and continues until it finds work. Work-
stealing systems are optimized for the case in which the number of steals is
much smaller than the total amount of work. This is called the “work first”
principle – the work of performing a steal is incurred by the thief (which has
no work), and not the victim (which is busy performing its work).

Distributed work-stealing must deal with some additional complications.
First, the cost of stealing is usually significantly higher than in the shared
memory case. For many systems, the target CPU must be involved in process-
ing a steal attempt. Additionally, one must solve the distributed termination
detection problem. The system must detect when all workers have finished
their work, and there is no more work. At this point all workers should be
shut down, and the computation should terminate.
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X10 already offers a mechanism for distributed termination detection –
finish. Thus, in principle it should be possible to spawn an activity at
each place, and let each look for work. To trigger finish based termination
detection however, these workers must eventually terminate. But when? One
simple idea is that a worker should terminate after k steal attempts have
failed. However this leaves open the possibility that a worker may terminate
too early – just because it happened to be unlucky in its first k guesses. If
there is work somewhere else in the network then this work can no longer be
shared with these terminated workers, thereby affecting parallel efficiency.
(In an extreme case this could lead to sequentialize significant portion of the
work.)

Therefore there must be a way by which a new activity can be launched
at a place whose worker has already terminated. This leads to the idea of a
lifeline graph. For each place p we pre-determine a set of other places, called
buddies. Once the worker at p has performed k successive (unsuccessful)
steals, it examines its buddies in turn. At each buddy it determines whether
there is some work, and if so, steals a portion. However, if there is no work,
it records at the buddy that p is waiting for work. If p cannot find any
work after it has examined all its buddies, it dies – the place p now becomes
quiescent.

But if P went to a buddy B, and B did not have any work, then it must
itself be out looking for work – hence it is possible that it will soon acquire
work. In this case we require that B distribute a portion of the work to those
workers that attempted to buddy steal from it but failed. Work must be
spawned on its own async – using the at (p) async S idiom. If P had no
activity left, it now will have a fresh activity. Thus, unlike pure work-stealing
based systems, a system with lifeline graphs will see its nodes moving from
a state of processing work (the active state), to a state in which they are
stealing to a state in which they are dead, to a state (optionally) in which
they are woken up again with more work (and are hence back in the active
state).

Note that when there is no work in the system, all places will be dead,
there will be no active async in the system and hence the top-level finish
can terminate.

The only question left is to determine the assignment of buddies to a
place. We are looking for a directed graph that is fully connected (so work
can flow from any vertex to any other vertex) and that has a low diameter
(so latency for work distribution is low) and has a low degree (so the number
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of buddies potentially sending work to a dead vertex is low). z-dimensional
hyper-cubes satisfy these properties and have been implemented.

9.3 UTS-G

UTS-G is a variant of UTS written using the GLB library. The code for
GlobalLoadBalancer and LocalJobRunner is no longer needed, since they
are part of the library. The code for managing bags of tasks is refac-
tored into a UTSTaskBag class. Similarly the code for executing a UTS
task runATMostNTasks in UTSTaskFrame is similarly very straightforward.
The native code (for SHA1 hashes) remains unchanged – it belongs in the
application and not the library.

Thanks to the GLB library the number of X10 LOCs drops from 493 for
UTS to 225 for UTS-G.

10 Betweenness Centrality

10.1 Problem description

The Betweenness Centrality benchmark is taken from the SSCA2 (Scalable
Synthetic Compact Application 2) v2.2 benchmark [?]; specifically, we imple-
ment the “fourth” kernel in this benchmark, the computation of betweenness
centrality:

The intent of this kernel is to identify the set of vertices in the
graph with the highest betweenness centrality score. Between-
ness Centrality is a shortest paths enumeration-based centrality
metric, introduced by Freeman (1977). This is done using a be-
tweenness centrality algorithm that computes this metric for ev-
ery vertex in the graph. Let σst denote the number of shortest
paths between vertices s and t, and σst(v) the number of those
paths passing through v. Betweenness Centrality of a vertex v is
defined as BC(v) = Σs 6=v 6=t∈V σst(v)/σst.

The output of this kernel is a betweenness centrality score
for each vertex in the graph and the set of vertices the highest
betweenness centrality score.

We implement the Brandes’ algorithm described in the benchmark, aug-
menting Dijkstra’s single-source shortest paths (SSSP) algorithm, for un-
weighted graphs. We have implemented the exact variant of the benchmark
(K4approx=SCALE).
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The solution we implement makes one very strong assumption: that the
graph is “small” enough to fit in the memory of a single place. Since the graph
itself is not modified during the execution of this benchmark, it thus becomes
possible to implement this benchmark by replicating the graph across all
places. Now effectively the computation can be performed in an embarrass-
ingly parallel fashion. The set of N vertices is statically partitioned among
P places; each place is responsible for performing the computation for the
source vertices assigned to it (for all N target vertices) and computes its
local betweennessMap. After this is done an allReduce collective performs
an AND summation across all local betweennessMaps.

Clearly, statically partitioning the work amongst all places in this way is
not ideal. The amount of work associated with one source node v vs another
w could be dramatically different. Consider for instance a degenerate case: a
graph of N vertices, labeled 1 . . . N , with an edge (i, j) if i < j. Clearly the
work associated with vertex 1 is much more than the work associated with
vertex N .

Section ?? discusses how to dynamically load-balance these tasks across
all places using the GLB framework (Section ??).

10.2 Structure of the code

The multi-place structure of this code is quite straightforward. We use the
standard at-scale X10 idiom for SPMD code:

1. Create a distributed data structure, accessed through a PlaceLocalHandle
which points to an instance of a “host” object (an instance of SSCA2)
at each node. (Invocation of makeFlat.)

2. Run the actual computation (invocation of broadcastFlat with the
closure specifying the work to be done at each place.

The work done in each place is the computation of a bfsShortestPaths

for a slice of vertices from startVertex to endVertex. This loops
through the vertices in the given range, computing the betweennessMap
locally.

Note this computation is single threaded. It is not difficult to make
this multi-threaded.

3. Once the local computation has been done, and the local contribution
to the betweennessMap computed, a Team.WORLD.allreduce ensures
that the results are reduced and made available at place 0.
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10.3 BC-G

BC-G implements dynamic load-balancing by using the GLB library. Note
that this is a new capability (over what is supported by BC) – therefore
it is not surprising that new code needs to be written and the line count is
actually higher than for BC. Specifically, BCTaskFrame and BCTaskBag needs
to be implemented, together with the invocation of the GLB framework. A
task captures a (start, end) range of vertices. The code for BCTaskFrame

is straightforward – it pops tasks from the BCTaskBag and for each task
executes it by calling bfsShortestPaths already implemented in BC. The
reducer takes two betweenness maps (vectors) and sums them up pointwise.

We now consider the implementation of BCTaskBag. Our current imple-
mentation (reported in this submission) is preliminary and in need of further
work. It is designed to satisfy the following properties. It should be possible
to find the “mid point” fast so that the bag can be split in two quickly. The
cost of a merge should be low.

The current implementation uses an array, a head pointer and a tail
pointer. The head pointer is moved forward whenever the task frame retrieves
an item and works on it. The tail pointer is used during splitting, so it can
move to the split point, copy the latter half of the data and send it out.

When merging, we create a new array and copy the local taskbag and
the incoming taskbag to the new array and set up the head and tail pointer
properly. We believe this copy is expensive and should be eliminated.

We believe a more careful design for this data-structure will improve
performance. Basically we need to design a data-structure that represents
a set of intervals such that two such sets can be combined quickly and split
quickly, where the split ensures that the sum of the sizes of intervals in each
half are roughly equal. We believe that improving the design of this data-
structure will significantly improve performance. We expect to work on this
in the next few weeks, before SuperComputing.
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