
Establishing safety of X10 programs (v 0.3)
Vijay Saraswat

1 Denotational Semantics

1.1 Preliminaries

We shall be concerned with multisets. A multiset is a set which permits
multiple occurrences of the same element. We can think of a multiset as
a set where each element has an associated “hidden” tag which serves to
distinguish it from all other elements. We will write a multiset with elements
a, b, . . . , z as {a, b, . . . , z}. Thus we will not have {1, 1} = {1} since the
cardinality of the left hand side is two and of the right hand side one. As
usual, if A and B are two multisets we shall say A is a subset of B (and write
A ⊆ B if every element of A is also an element of B.

Let S be some multiset. An order over S is a transitive binary relation
on S. An order is typically written using the symbol < as an infix operator.
We shall be interested in irreflexive orders: these have the pbroperty that
s 6< s, for all s ∈ S. Such an order < is total if for any two distinct elements
a, b ∈ S either a < b or b < a; otherwise it is partial.

We shall assume given a fixed set of variables, Var and of values, Val. A
heap, h, is a function from Var to Val.

Definition 1.1 (Step) A step is a pair of functions (c : Heap→ Boolean, f :
Heap→ Heap), c is called the condition and f the action. We shall let True
stand for the condition that is always true (regardless of the input heap).

We shall let Step stand for the space of all steps (over the fixed sets Var

and Val).

For a step z = (a, b) we let cz stand for a and fz for b. We will use “λ”
notation to writen functions:

(λ-term) M ::=
x a variable
λx.M a function with body M and formal x
(MN) a function application

The term λx.M represents a function which when applied to value v returns
the result of evaluating M with x replaced by v. The term (MN) represents
the application of the function M to the value N .

2013 COMS W4130 PPPP - Semantics (c) IBM Page 1 of 8



Example 1.1 Consider the statement x = 3. We shall associate with it the
step (True, f) where f takes as input a heap g and produces the heap which
is the same as g except that the variable x is mapped to 3. We shall write such
a heap as g[x 7→ 3], hence the action associated with x = 3 is λg.g[x 7→ 3].

A sequential program executes a totally ordered multiset of steps.1 With-
out async, after each statement (step) there is a unique next statement to
be executed (as recorded by the program counter). Let us say that two steps
x and z are ordered by < (and write x < z) if in every possible execution of
the program x must execute before z. This order is called the happens before
order.

In a program with async, at any point there may be multiple actions
that could be executed . . . as many as the number of asyncs running. Since
these actions can be executed in any order, they are unordered with respect
to each other. Hence the set of actions executed by a program with asyncs

may only be partially ordered.

Definition 1.2 (May Happen in Parallel) For two steps a, b if neither
a < b nor b < a then we say that a and b May Happen in Parallel (MHP),
and write a# b.

1.2 Processes

Definition 1.3 (Process.) A process is a triple P = (X,<,Z) where X is
a (finite) multiset of steps, < is a partial order on X (the HB order) and
Z ⊆ X marks the subset of synchronous steps of X, i.e. steps that are known
to terminate when P (synchronously) terminates.

A process P = (X,<,Z) is said to be sequential if < is total, synchronous
if Z = X, and wait-free if for every step x ∈ X, cx = True.

In the literature (P,<) is called a pomset – a partially ordered multiset.
Vaughan Pratt was one of the first researchers to emphasize the use of pom-
sets to model concurrency.

If P = (A,�, B) then we define XP to be A, <P to be � and ZP to be
B.

For two processes P and Q we say P = Q if XP = XQ, <P=<Q and
ZP = ZQ.

1Why multiset rather than a set? Because two different statements may denote the
same action.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 2 of 8



We can define operators on processes to mimic sequential execution,
async and finish. We will define the semantic function P [[. . .]] which takes
a statement as argument and returns a process. The use of [[. . .]] is conven-
tional in denotational semantics – the brackets typically enclose syntactic
elements (such as statements).

For sets A and B, the set A×B is just the set of pairs whose first element
is from A and second element from B. i.e.

A×B = {(a, b) | a ∈ A, b ∈ B}

Skip. The unique process skip represents the process that does nothing.
It has no steps, hence is forced to have the empty HB relation and no syn-
chronous steps.

skip = (∅, ∅, ∅) (1)

Note it is vacuously sequential and synchronous. We shall let P [[skip;]] =
skip.

Basic statement. Let z be an step. We can obtain a process from z that
has the single step z as follows:

Inject(z) = ({z}, ∅, {z}) (2)

Inject(z) is always sequential and synchronous.

Sequential composition. The definition of sequential composition P Q
of processes is straightforward. The steps of P Q must be precisely those of
P and Q.

The HB order must respect the HB orders of P and Q, and further ensure
that every step of Q is after every step of ZP . Why ZP instead of P? Not all
steps of P would have terminated by the time Q needs to be started – e.g. P
may “contain” an async that needs to keep running in parallel with Q. This
is precisely why we had to distinguish a subset Z of P to mark the steps of
P that must terminate before subsequent processes are activated. Formally
we can specify the partial order as:

<′= (<P ∪ <Q ∪{(p, q) | ∃z ∈ ZP .p <P z, q ∈ XQ}

That is, p <′ q if and only if p HB q according to P or Q or there is some z
in ZP such that p HB z and z HB q.

The synchronous steps of P Q must be precisely those of P and Q.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 3 of 8



So now we can define:

P Q = (XP ∪XQ, <
′, ZP ∪ ZQ) (3)

Exercise 1.1 Show that if P and Q are processes then so is P Q.
Show that if P and Q are sequential and synchronous then so is P Q.
Show that if P and Q are sequential, but not both synchronous then P Q

is neither sequential nor synchronous.
Show that P Q is wait-free precisely if P and Q are.

Note we use space (juxtaposition) in the syntax to separate two state-
ments, and also in the semantics to specify sequential composition of pro-
cesses.

async. async(P ) is just like P except that it has no synchronous steps:

async(P ) = (XP , <P , ∅) (4)

async(P ) is not synchronous. It is sequential if P is. It is wait-free if P is.

finish. finish(P ) is just like P except that every step is synchronous:

finish(P ) = (XP , <P , XP ) (5)

finish(P ) is synchronous. It is sequential if P is. It is wait-free if P is.

Atomic block. Let S be a sequential, synchronous, wait-free process. Let
g represent the step obtained by composing the steps of XS in the order
specified by <X . Let z = (True, g).

atomic(S) = ({z}, ∅, {z}) (6)

atomic(S) is sequential, synchronous and wait-free.

Conditional atomic block. Let S be a sequential, synchronous, wait-free
process and let c : Heap→ Boolean be a condition. Let g represent the step
obtained by composing the steps of the steps of XS in the order specified by
<X . Let z = (c, g).

when(c, S) = ({z}, ∅, {z}) (7)

when(c, S) is sequential, synchronous and wait-free only if c = True.

Exercise 1.2 Show that atomic(S) = when(True, S).

2013 COMS W4130 PPPP - Semantics (c) IBM Page 4 of 8



Semantic function. We can relate syntax (statements) to semantics (pro-
cesses) through the semantic function P [[. . .]].

Definition 1.4 We define the semantic function P [[. . .]] that takes a state-
ment and returns its associated process inductively as follows. It assumes a
sister semantic function S[[. . .]] that takes a basic statement b (e.g. a read or
write statement or a variable declaration) and returns the action correspond-
ing to it, or a single condition c (e.g. an eauality comparison) and returns
the function corresponding to it.

P [[skip;]] = skip

P [[b]] = Inject(S[[b]])

P [[s t]] = P [[s]] P [[t]]

P [[async s]] = async(P [[s]])

P [[finish s]] = finish(P [[s]])

P [[atomic s]] = atomic(P [[s]])

P [[when(c){s}]] = when(S[[c]],P [[s]])

Example 1.2 Consider the statement s given by:

var x:Long=0;
finish {
async x=2;
async x=2;
}

The process associated with this P [[s]] = ({a, b, c}, {a < b, a < c}, {a, b, c})
where:

• a = (True, λg.g[x 7→ 0])

• b = (True, λg.g[x 7→ 2])

• c = (True, λg.g[x 7→ 2])

This process is synchronous, but not sequential.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 5 of 8



1.3 Properties of combinators

Exercise 1.3 Check the following are true:

1. skip is a fixed point of Finish and Async:

finish(skip) = async(skip) = skip

2. skip is the unit of sequential composition:

skip P = P skip = P

3. Sequential composition is associative:

(P Q) R = P (Q R)

4. Async is idempotent:

async(async(P )) = async(P )

5. Async distributes over sequential composition, if the first argument is
asynchronous:

async(async(P ) Q) = async(P ) async(Q)

6. Finish absorbs a nested Finish or Async:

finish(finish(P )) = finish(async(P )) = finish(P )

7. Finish absorbs a Finish or Async nested in the second argument of
a sequential composition:

finish(P async(Q)) = finish(P finish(Q)) = finish(P Q)

8. Nested atomics flatten out:

atomic(atomic(S)) = atomic(S)

9. Atomics nested within a sequential composition flatten out:

atomic(P atomic(S)) = atomic(atomic(P ) S) = atomic(P S)

Exercise 1.4 Give examples that illustrate the following are false:

• async(P ) Q = P async(Q)

• finish(async(P )) = P

• finish(async(P ) async(Q)) = finish(P Q)

2013 COMS W4130 PPPP - Semantics (c) IBM Page 6 of 8



1.4 Execution.

Definition 1.5 An execution of a process P = (X,<,Z) is obtained by run-
ning the steps of X in any total order that extends < (from an initial heap),
provided that the conditions of each step are satisfied by the heap at that step.

Formally, let E ⊆ X and <′ be a total order on E extending <. Let
z1, . . . , zn be the elements of E enumerated according to <′. Let h0 be an
initial heap and for i > 0, define hi = fzi(hi−1). Then (E,<′) is an execution
of P if:

1. E correctly answers all conditions: for all i > 0 czi(hi−1) is true.

2. E is maximal, the steps not in E cannot be scheduled: for all steps
z ∈ X \ E, cz(hn) is false.

The observation generated by an execution (E,<′) is (h0, hn) if E = X;
otherwise it is (h0,⊥) (indicating that this execution deadlocks). The set of
observations of P is denoted by o(P ).

Definition 1.6 (Determinate Processes) A process P is said to be de-
terminate if o(P ) represents the graph of a function, that is, if o(P ) contains
two pairs (g, h) and (g, h′) then it is the case that h = h′.

In other words, a determinate process will produce a unique output when
run on a given heap.

Exercise 1.5 Show: programs with async may have an HB order that is not
total, hence may have multiple distinct executions, and therefore, multiple
distinct results.

Exercise 1.6 (Wait-free processes cannot deadlock.) Show that if P
is a wait-free process then for no heap h is it the case that (h,⊥) ∈ o(P ).

1.5 Data race.

A program s is said to have a concrete data race if the associated process
P [[s]] has

• two steps a, b, such that a# b

• there is a mutable location l that one of them writes and the other
reads/writes.

2013 COMS W4130 PPPP - Semantics (c) IBM Page 7 of 8



Theorem 1.1 If s has no concrete data races then P [[s]] is determinate.

Lack of concrete data races is a sufficient, not a necessary condition for
determinacy. Programs with races may still be determinate (cf Example 1.2).

References

2013 COMS W4130 PPPP - Semantics (c) IBM Page 8 of 8


