Establishing safety of X10 programs (v 0.1) Vijay Saraswat

1 Outline

- 1. An *action* is a function from variables to variables. A sequential program executes a *totally ordered* sequence of actions. A program with **async** executes a *partially ordered* sequence of actions. We call the partial order the *happens before* relation since in every possible execution of the program, f must happen before g.
- 2. For two actions a, b if neither $a \leq b$ nor $b \leq a$ then we say that a and b May Happen in Parallel (MHP), and write a # b.
- 3. The rules for HB are simple.

With each statement S we associate a *process*. A process is a triple $P = (X, \leq, Z)$ where X is a (finite) set of actions, \leq is a partial order on X and $Z \subseteq X$ marks the subset of actions of X that must execute before any process Q that follows P can start executing.

We can define operators on processes to mimic sequential execution, async and finish. Before that some preliminaries.

- For sets A and B, the set $A \times B$ is just the set of pairs whose first element is from A and second element from B.
- For a binary relation R on a set A, let $R\star$ represent the transitive closure of R.
- For a partially ordered set (U, \leq) , let $\min(U)$ stand for the minimal elements of U (i.e. all elements $x \in U$ such that there is no other element y such that $y \leq x$. Similarly for $\max(U)$.
- If $P = (X, \leq, Z)$ then we define X_P to be X, \leq_P to be \leq and Z_P to be Z, min (P) to be min $_{\leq_P}(X_P)$, and max (P) to be max $_{\leq_P}(X_P)$.
- 4. Now we can provide the definitions. Let $\leq' = (\leq_P \cup \leq_Q \cup (Z_P \times \min(Q))) \star$. Let f be an action representing a single statement. Let R be a process that is totally ordered, and let g represent the action obtained by composing the actios of R in the order specified by the

given total order.

$$f = (\{f\}, \emptyset, \{f\}, \{f\})$$
(1)

$$\mathtt{atomic} R = (\{g\}, \emptyset, \{g\}, \{g\}) \tag{2}$$

$$P; Q = (X_P \cup X_Q, \leq', \max_{\leq'} (Z_P \cup Z_Q))$$
(3)

$$\operatorname{async} P = (X_P, \leq_P, \emptyset) \tag{4}$$

$$finish P = (X_P, \leq_P, \max(P))$$
(5)

- 5. An *execution* of a process $P = (X, \leq, Z)$ is obtained by running the actions of X in any total order that extends \leq , from an initial heap. The *result* of the execution is the final heap.
- 6. Show: programs with **async** may have an HB order that is not total, hence may have multiple distinct executions, and therefore, multiple distinct results.
- 7. A program S is said to have a *concrete data race* if the associated process has two actions a, b such that they operate on the same location, at least one of them is a write and it is not the case that $a \leq b$ or $b \leq a$.
- 8. Programs with no data races are *scheduler-determinate*: on every execution they will yield the same result.