Establishing safety of X10 programs (v 0.1)
Vijay Saraswat

1 Outline

1. An action is a function from variables to variables. A sequential program executes a totally ordered sequence of actions. A program with async executes a partially ordered sequence of actions. We call the partial order the
 happens before \(f \) relation since in every possible execution of the program, \(f \) must happen before \(g \).

2. For two actions \(a, b \) if neither \(a \leq b \) nor \(b \leq a \) then we say that \(a \) and \(b \) May Happen in Parallel (MHP), and write \(a \# b \).

3. The rules for HB are simple.

 With each statement \(S \) we associate a process. A process is a triple \(P = (X, \leq, Z) \) where \(X \) is a (finite) set of actions, \(\leq \) is a partial order on \(X \) and \(Z \subseteq X \) marks the subset of actions of \(X \) that must execute before any process \(Q \) that follows \(P \) can start executing.

 We can define operators on processes to mimic sequential execution, async and finish. Before that some preliminaries.

 • For sets \(A \) and \(B \), the set \(A \times B \) is just the set of pairs whose first element is from \(A \) and second element from \(B \).

 • For a binary relation \(R \) on a set \(A \), let \(R^\star \) represent the transitive closure of \(R \).

 • For a partially ordered set \((U, \leq) \), let \(\min(U) \) stand for the minimal elements of \(U \) (i.e. all elements \(x \in U \) such that there is no other element \(y \) such that \(y \leq x \). Similarly for \(\max(U) \).

 • If \(P = (X, \leq, Z) \) then we define \(X_P \) to be \(X \), \(\leq_P \) to be \(\leq \) and \(Z_P \) to be \(Z \), \(\min(P) \) to be \(\min_{\leq_P}(X_P) \), and \(\max(P) \) to be \(\max_{\leq_P}(X_P) \).

4. Now we can provide the definitions. Let \(\leq' = (\leq_P \cup \leq_Q \cup (Z_P \times \min(Q)))^\star \). Let \(f \) be an action representing a single statement. Let \(R \) be a process that is totally ordered, and let \(g \) represent the action obtained by composing the actions of \(R \) in the order specified by the
given total order.

\[
 f = (\{f\}, \emptyset, \{f\}, \{f\}) \tag{1}
\]

\[
 \text{atomic} R = (\{g\}, \emptyset, \{g\}, \{g\}) \tag{2}
\]

\[
 P; Q = (X_P \cup X_Q, \leq', \max(Z_P \cup Z_Q)) \tag{3}
\]

\[
 \text{async} P = (X_P, \leq_P, \emptyset) \tag{4}
\]

\[
 \text{finish} P = (X_P, \leq_P, \max(P)) \tag{5}
\]

5. An \textit{execution} of a process \(P = (X, \leq, Z) \) is obtained by running the actions of \(X \) in any total order that extends \(\leq \), from an initial heap. The \textit{result} of the execution is the final heap.

6. Show: programs with \texttt{async} may have an HB order that is not total, hence may have multiple distinct executions, and therefore, multiple distinct results.

7. A program \(S \) is said to have a \textit{concrete data race} if the associated process has two actions \(a, b \) such that they operate on the same location, at least one of them is a write and it is not the case that \(a \leq b \) or \(b \leq a \).

8. Programs with no data races are \textit{scheduler-determinate}: on every execution they will yield the same result.