
A Brief Introduction To X10
(For the High Performance Programmer)

Vijay A. Saraswat Olivier Tardieu David Grove
David Cunningham Mikio Takeuchi Benjamin Herta

September 10, 2012

i

ii

Version of September 12. Intended for use only in the Columbia University COMS
4130 course, Fall 2012.

Copyright c© 2012 The IBM Corporation

All rights reserved.

This work is part of the X10 project (http://x10-lang.org).

Preface

The vast and omni-present computer industry of today is based fundamentally on what
we shall call the standard model of computing. This is organized around the idea that
a single stream of instructions operates on memory – discrete cells holding values –
by reading these values, operating on them to produce new values, and writing these
values back into memory.

In the last few years this model has been changed fundamentally, and forever. We have
entered the era of concurrency and distribution.

Moore’s Law continues, unabated – making available twice the number of transistors
every 18 months for the same silicon. Traditionally, computer architects have used this
extra real estate to provide faster implementations of the standard model by increasing
clock speed and deepening the pipelines needed to speculatively execute many instruc-
tions in parallel. Thus, the standard model has needed no change.

Unfortunately, clock speeds have now run up against the heat envelope – speed cannot
be increased without causing the chips to run hotter than can be tolerated by current
packaging.

What should this real estate be used for, then? Computer manufacturers have turned to
multi-core parallelism, a radical idea for mainstream computing. Instead of using all
the real estate to support the illusion of a single thread of execution, they have divided
up the real estate to support multiple such threads of control. Multiple threads may
now read and write the same locations simultaneously.

This change has been coupled with a second, less visible but equally powerful change.
The widespread availability of cheap commodity processors and advances in computer
networking mean that clusters of multiple computers are now commonplace. Further,
a vast increase in the amount of data available for processing means that there is real
economic value in using clusters to analyze this data, and act on it.

Consequently, the standard model must now give way to a new programming model.
This model must support execution of programs on thousands of multi-core comput-
ers, with tens of thousands of threads, operating on petabytes of data. The model
should smoothly extend the original standard model so that familiar ideas, patterns,
idioms continue to work, in so far as possible. It should permit easy problems to be
solved easily, and must allow sophisticated programmers to solve hard problems. It
should permit programmers to make reasonably accurate performance predictions by

iii

iv

just looking at the code. It should be practical and easily implementable on all existing
computer systems.
Since 2004, we have been developing just such a new programming model. We began
our work as part of the DARPA-IBM funded PERCS research project. The project
set out to develop a petaflop computer (capable of 1015 operations per second), which
could be programmed ten times more productively than computer of similar scale in
2002. Our specific charter was to develop a programming model for such large scale,
concurrent systems that could be used to program a wide variety of computational
problems, and could be accessible to a large class of professional programmers.
The programming model we have been developing is called the APGAS model, the
Asynchronous, Partitioned Global Address Space model. It extends the standard model
with two core concepts: places and asynchrony. The collection of cells making up
memory are thought of as partitioned into chunks called places, each with one or more
simultaneously operating threads of control. A cell in one place can refer to a cell in
another – i.e. the cells make up a (partitioned) global address space. Four new basic
operations are provided. An async spawns a new thread of control that operates asyn-
chronously with other threads. An async may use an atomic operation to execute a
set of operations on cells located in the current place, as if in a single step. It may use
the at operation to switch the place of execution. Finally, and most importantly it may
use the finish operation to execute a sequence of statements and wait for all asyncs
spawned (recursively) during their execution to terminate. These operations are orthog-
onal and can nest arbitrarily with few exceptions. The power of the APGAS model lies
in that many patterns of concurrency, communication and control – including those
expressible in other parallel models of computation such as PThreads, OpenMP, MPI,
Cilk – can be effectively realized through appropriate combinations of these constructs.
Thus APGAS is our proposed replacement for the standard model.
Any language implementing the old standard model can be extended to support the
APGAS model by supplying constructs to implement these operations. This has been
done for JavaTM(X10 1.5), C (Habanero C), and research efforts are underway to do
this for UPC.
Our group has designed and implemented a new programming language, X10, orga-
nized around these ideas. X10 is a modern language in the strongly typed, object-
oriented programming tradition. Its design draws on the experience of team members
with foundational models of concurrency, programming language design and seman-
tics, type systems, static analysis, compilers, runtime systems, virtual machines. Our
goals were simple – design a language that fundamentally focuses on concurrency and
distribution, and is capable of running with good performance at scale, while build-
ing on the established productivity of object-oriented languages. In this, we sought
to span two distinct programming language traditions – the old tradition of statically
linked, ahead-of-time compiled languages such as Fortran, C, C++, and the more mod-
ern dynamically linked, VM based languages such as Java, C#, F#. X10 supports
both compilation to the JVM and, separately, compilation to native code. It runs on
the PERCS machine (Power 7 CPUs, P7IH interconnect), on Blue Gene machines, on
clusters of commodity nodes, on laptops; on AIX, Linux, MacOS; on PAMI, and MPI;
on Ethernet and Infiniband.

v

We believe the X10 language has now reached a stage of maturity where its introduc-
tion to a wider class of programmers is appropriate. As of August 2012, the language
has been stable for over a year. Many tens of thousands of lines of X10 application code
have been written, by the core X10 development team and other project participants.
M3R, a main memory implementation of the Hadoop Map Reduce Java API, has been
developed. It executes Map Reduce jobs on a cluster by transparently caching data in
memory, and delivers significant performance improvements over the Hadoop engine.
Work is under way to develop a comprehensive library of multinode graph algorithms.
The PERCS project milestone to demonstrate execution of X10 at scale on the PERCS
machine (over 47,000 cores) has been met.

This book presents an introduction to programming in X10 for the high performance
programmer. It uses the PERCS benchmark programs to illustrate key X10 program-
ming concepts. It discusses particular concurrency, communication and computation
idioms and shows how they can be expressed in such a way that their implementation
can scale to tens of thousands of cores.

In conclusion, we would like to acknowledge the key role played by several mem-
bers of the core X10 team. We particularly thank Vivek Sarkar, Kemal Ebcioglu,
Nathaniel Nystrom, Igor Peshansky, Yoav Zibin, Kiyokuni Kawachiya, Hiroshi Horii,
Yuki Makino, Bob Fuhrer, Emmanuel Geay, Sayantan Sur, Bowen Alpern, Tong Wen,
Mandana Vaziri, Bard Bloom, Evelyn Duesterwald and Avraham Shinnar for their sub-
stantial contributions to the project. We also thank Philippe Charles, Sreedhar Kodali,
Ganesh Bikshandi, Krishna Nandivada Venkat, Pradeep Varma, Bruce Lucas, Juemin
Zhang, Anju Kambadur, Jim Xia, Shivali Agarwal, R K Shyamsundar, Haichuan Wang,
Yan Li, Qi Ming, Hai Bo Lin, and Christoph von Praun for their many contributions.
We also thank our (current and erstwhile) colleagues on the PERCS project, particu-
larly Kevin Gildea, Steve Cooper, George Almasi, Calin Cascaval, Vickie Robinson
and Pat Esquivel. We thank John Richards, Jonathan Brezin, Cal Swart, John Thomas
and Rachel Bellamy of the PERCS Productivity Assessment team.

We are grateful to have had the long term support of Michael Hind, Charles Lickel,
Tamiya Onodera, Brent Hailpern and David McQueeney in IBM Research. Only an
organization as rich as IBM Research can bring together the talent, funding and op-
portunity for the vast (decade long!) effort it takes to develop a new programming
language!

Vijay wishes to thank Prof Martha Kim from Columbia University for co-teaching
several editions of the X10-based course on “Principles and Practice of Parallel Pro-
gramming”. Some of the material from this book has been used in this course.

Hawthorne, NY Vijay, Olivier, Dave,
Tokyo, Japan Dave, Mikio and Ben
August 2012

Contents

I Programming Framework 1

1 Why X10? 5

2 X10 basics 9
2.1 Core Object-oriented features . 9

2.1.1 Class . 10
2.1.2 Structs . 14
2.1.3 Function literals . 15

2.2 Statements . 15
2.3 Types . 18

2.3.1 Generic types . 19
2.3.2 Constrained types . 19
2.3.3 Type definitions . 20

3 The APGAS model 21
3.1 Async . 21
3.2 Finish . 22

3.2.1 The rooted exception model 25
3.3 Atomic . 25
3.4 Places . 26

3.4.1 Motivation . 26
3.4.2 The at construct . 28
3.4.3 GlobalRef . 29
3.4.4 PlaceLocalHandle . 30

4 The X10 Performance Model 33
4.1 Fundamental X10 Performance Model 33

4.1.1 X10 Type System . 34
4.1.2 Distribution . 35
4.1.3 Async and Finish . 36
4.1.4 Exceptions . 37

4.2 X10 v2.2.3 Implementation Overview 37
4.3 X10 v2.2.3 Runtime . 39

4.3.1 Distribution . 40
4.3.2 Concurrency . 41

vi

CONTENTS vii

4.3.3 Synchronization . 44
4.4 X10 v2.2.3 Compilation . 46

4.4.1 Classes and Interfaces . 46
4.4.2 Primitives and Structs . 46
4.4.3 Closures and Function Types 47
4.4.4 Generics . 47
4.4.5 Memory Management . 47
4.4.6 Other Considerations . 48

4.5 Final Thoughts . 48

II Programming Examples 51

5 Basic Multi-Place Idioms 55
5.1 HelloWholeWorld . 55
5.2 Stream . 57

5.2.1 Problem . 57
5.2.2 Solution design . 58
5.2.3 Code . 59

6 Optimizing Communication 61
6.1 Memory allocation and network hardware 61

6.1.1 Enabling RDMA and Asynchronous Copy 61
6.1.2 Customized Memory Allocation 61
6.1.3 Teams and other hardware optimizations 61

6.2 Random Access . 62
6.2.1 Problem . 62
6.2.2 Solution Design . 62
6.2.3 Code . 62

6.3 KMeans: Unsupervised clustering 64
6.3.1 Problem . 64
6.3.2 Solution design . 64
6.3.3 Code . 64

6.4 Fourier Transform . 66
6.4.1 Problem . 66
6.4.2 Solution design . 67
6.4.3 Code . 67

6.5 LU Decomposition . 68
6.5.1 Problem . 68
6.5.2 Solution design . 68
6.5.3 Code . 68

7 Unbalanced computations 71
7.1 Unbalanced Tree Search . 72

7.1.1 Problem . 72
7.1.2 Solution Design . 73

viii CONTENTS

7.1.3 Code . 74

III Conclusion and Appendices 79

8 Conclusion 81

References 83

A Building X10 87
A.1 Network transport implementations 87
A.2 Building the X10 runtime . 88
A.3 Building your program . 88

B Running X10 89
B.1 X10 Variables . 89

B.1.1 Congruent Memory Allocator 89
B.1.2 Optimized Collectives . 90
B.1.3 X10 compiler options for performance tuning 90

B.2 POE Settings . 90

Part I

Programming Framework

1

3

This part motivates and introduces X10. §1 provides motivation for the development of
X10 and outlines progress made on the project so far. §2 introduces the basic elements
of the language. §3 presents in detail the core concurrency and distribution constructs
of the APGAS model. Finally, §4 sketches the X10 v2.2.3 implementation (focusing on
the Native Runtime), and discusses several pragmas and their applicability conditions.

4

1 Why X10?

X10 is a new high-performance, high productivity programming language developed
in the IBM “Productive, Easy-to-use, Reliable Computing System” project (PERCS,
[35]), supported by the DARPA High Productivity Computer Systems initiative (HPCS,
[7]). X10 is a class-based, strongly typed, explicitly concurrent, garbage-collected,
multi-place object-oriented programming language ([27, 4]).

The X10 language was designed to address the central productivity challenge of High
Performance Computing (HPC). We recognized the reality that there was no overlap
between the models, tools, and techniques that underlie mainstream computing prac-
tice and those that underlie HPC. Main stream computing has developed eco-systems
capable of supporting tens of millions of programmers (with a wide variety of talent
and expertise), on a diversity of hardware platforms using object-oriented program-
ming concepts (modularity, separation of concerns, use of libraries, . . .) and powerful
tools built on frameworks such as Eclipse [37]. They remain at the cutting edge by
successfully leveraging research in the theory and practice of programming languages
(development of advanced static analysis tools, type systems, program understanding
and refactoring systems, etc).

The HPC eco-system, on the other hand, is highly specialized and extremely small (per-
haps thousands of programmers), of use on a handful of advanced architectures, and
focused on programming models such as MPI ([30]) that speak to the narrow needs
of regular computations at extreme scale, and remain virtually disconnected from ad-
vances in programming languages. Consequently, the national labs have to take in
programmers from academia and industry who have virtually no background in HPC
and train them afresh. The loss in productivity for the HPC field is manifold: narrow fo-
cus implies limited talent pool, implies small pool of trained programmers, implies no
economic incentive for advanced tools and programming environments, implies high
bar to entry, implies limited talent pool.

In January 2004, we set out to break this vicious cycle with the creation of the X10
project. We recognized the impending multi-core crisis, and that both the commercial
and HPC models would need to change to accommodate concurrency. We made two
critical decisions.

First, drawing on our past work in theoretical computer science (and the slogan “Clean,
but Real” many in the community share), we designed a core programming model that
fundamentally accounts for concurrency (asyncs) and distribution (places), with just

5

6 CHAPTER 1. WHY X10?

four basic, orthogonal primitives – async, finish, atomic (and friends), and at. This
model we later dubbed the Asynchronous Partitioned Global Address Space (APGAS)
model [25]. We showed that many well-known patterns of communication, computa-
tion and concurrency arise through combinations of these four operations. At the same
time these constructs are simple and elegant enough that we could formulate founda-
tional models and establish important semantic properties – such as deadlock-freedom
for a very large fragment of the language (see, e.g.[27]).

Second, we decided to place X10 firmly in the modern object oriented programming
languages tradition ([13, 36]) – even though languages such as Java have long been
regarded with aversion by HPC programmers because of their perceived shortcomings
for high performance computing. We analyzed Java in depth and recognized that we
could build a programming language (based on APGAS) that was different from Java
in its treatment of concurrency, distribution and some core sequential programming
constructs while addressing these shortcomings, and yet remaining within the broad
tradition and hence being quite familiar to Java programmers. Furthermore, we realized
that we could build two different back-ends for the same language — a Native back-end
that compiles X10 to C++ and uses static ahead of time compilation techniques, and
a Managed back-end that compiles X10 to byte-codes for the JVM and executes X10
on a cluster of JVMs. Even though this substantially complicated our implementation
task, we realized that this was critical to the eventual success of X10 – not just as an
“HPC” language used by a handful of HPC programmers, but as a commercially viable
language used to address a diversity of programming problems that are best tackled
with JVM-based programs.

In these two major design decisions we explicitly and consciously went against the
prevalent HPC dogma which holds that the way to design HPC languages is to start
with a very narrowly focused programming model that is known to execute efficiently,
e.g. Single Program Multiple Data (SPMD) computation, and expand it out carefully
to meet certain desirable criteria, e.g. permitting overlap of computation with commu-
nication. Arguably, this was the philosophy that led to UPC ([9]). These two decisions
were challenged at the first major review of X10 in Dec 2004, conducted by a blue
ribbon panel put together by DARPA, including designers of MPI ([31]) and UPC and
other key HPC programming model leaders. But we stayed firm.

We demonstrated the first implementation of X10 on a single JVM in February 2005,
leveraging the Polyglot compiler framework [21]. In 2007, we demonstrated X10 run-
ning on multiple places, on the native back-end, and successfully met an internal mile-
stone (the “CEO milestone”). We showed that the Berkeley UPC team’s state-of-the-art
performance on 3-d FFT (achieved by overlapping computation and communication)
[20] could be replicated in X10 ([2]), and our submission to the 2007 HPC Challenge
competition won the award for “Most productive research implementation” ([34]).

We are now reaping the rewards of those foundational decisions. First, to our knowl-
edge, X10 is the first post-MPI programming language that has demonstrated perfor-
mance at scale (40K cores and above), on a variety of benchmarks of interest to the
HPC community. Our paper on lifeline-based global load balancing ([28]) showed
that X10 constructs (async, at, finish) provide the expressiveness for a new, scalable

7

approach to globally load balancing irregular workloads (such as Unbalanced Tree
Search), surpassing results obtained in prior research work (using, e.g. languages
such as UPC). Simultaneously, the productivity impact of X10 for developing HPC
applications has been recognized by the studies performed by the PERCS Productivity
Assessment team [8, 5, 16, 10].

Second, the attractiveness of X10 for commercial workloads was recognized in 2009
by IBM Research leadership, leading to increased funding for the Managed back-end.
This funding (independent of DARPA PERCS funding) paved the way for the devel-
opment of a large set of libraries in X10 (ported from Apache Harmony) and Java
inter-operability research.

This funding has been instrumental in X10 being usable as a foundation for parallel
application frameworks for the commercial world. The commercial world itself had
seen the rise of application frameworks such as Hadoop [33] which rely on a simple
but powerful programming framework (completely divorced from MPI, and hence not
rooted in the HPC tradition) to bring the aggregate compute and memory power of
thousands of nodes to solve commercially important problems in machine learning,
data mining, descriptive and predictive analytics etc. With the Main Memory Map Re-
duce (M3R) project [29], we have demonstrated that programs written in Java against
the Hadoop APIs could in fact be executed by an X10 map reduce engine that leverages
HPC techniques to keep application data in memory, perform in-memory shuffles, and
reduce the amount of communication between nodes. We showed that this resulted
in performance improvements of up to 40x on iterative map reduce applications, such
as the Page Rank computation. We showed that programs written in higher-level lan-
guages that compile down to Hadoop Map Reduce programs, such as Pig ([38]) and
DML ([12]) , can be executed unchanged on M3R.

M3R is now recognized as having enabled a whole new class of applications – interac-
tive big data analysis applications – and is being commercially deployed by IBM.

Third, X10 is beginning to attract interest from outside the original development groups.
The research and education community has come to recognize the importance of X10.
X10 and the APGAS framework are the foundations for the spin-off Habanero project
at Rice University. After an independent evaluation, a group at UCLA decided to base
their new compiler project on X10. X10 is being taught at over thirty universities
([40]). For instance, 2012 will mark the fourth edition of an X10-based course on
“Principles and Practice of Parallel Programming” being taught at Columbia Univer-
sity. (This course is now part of the regular curriculum for undergraduates at Columbia
University.) We are aware of over 70 publications on X10 ([39]) involving over 130
researchers. The first three papers on X10 (from 2004-05) now have over 700 citations.
The X10 workshop series ([24, 23]) has been established at PLDI, the third edition will
be held in 2013.

We believe these results speak amply to the success of our basic approach to address
the productivity challenges of High Performance Computing systems. We believe X10
is the first HPC language to demonstrate both performance at scale for traditional HPC
benchmarks, and advance the state of the art in handling certain kinds of commer-
cial work-loads. The simplicity of core X10 constructs, and its proximity to well-

8 CHAPTER 1. WHY X10?

established commercial programming languages has meant that X10 has already found
acceptance in academia. X10 is available on a wide variety of platforms, including the
PERCS hardware, as well as x86 and Blue Gene systems, on Linux, Mac OSX, and
Windows.

2 X10 basics

2.1 Core Object-oriented features

The core object-oriented features of X10 are very similar to those of Java or C#.

A program consists of a collection of top-level compilation units (“unit” for short). A
unit is either a class, a struct or an interface.

1 package examples;
2 import x10.io.Console;
3 public class Hello {
4 public static def main(args:Rail[String]){
5 if(args.size>0) Console.OUT.println("The first arg is: "+args(0));
6 Console.OUT.println("Hello, X10 world!");
7 val h = new Hello();
8 var result: Boolean = h.run();
9 Console.OUT.println("The answer is: "+result);

10 }
11 public def run():Boolean=true;
12 }

Classes, structs and interfaces live in packages (e.g. examples above). Packages typi-
cally consist of a sequence of identifiers separated by “.” (with no spaces).

Packages are used to control access to top-level units. If they are marked public they
can be accessed from code in any other package. If they have no accessibility modifier,
they can be accessed only by code living in the same package.

A file can contain multiple units – however only one of them may be marked public.
The name of the file must be the same as the name of the public unit, with the suffix
“.x10”.

The fully qualified name (FQN) of a class, a struct or an interface is the name of the
class, the struct or the interface prefixed with the name of the package that unit lives in.
For instance, the FQN for the class above is examples.Hello. A unit A must use the
FQN of another unit B unless it has an explicit import statement.

For instance:

9

10 CHAPTER 2. X10 BASICS

import x10.io.Console;

permits the name Console to be used in all the units in the file without being qualified
by the package name.

Packages are “flat” – importing a package x10 does not imply (for instance) that the
package x10.examples is imported automatically. However, the name of a package
is connected to the directory structure of the code. All the units defined in a package
x10.examplesmust live in files in the directory x10/examples (relative to some base
directory). All the units defined in the package x10 must live in files in the directory
x10.

2.1.1 Class

A class is a basic bundle of data and code. It specifies a number of members, namely
fields, methods, constructors, and member classes and interfaces. Additionally a class
specifies the name of another class from which it inherits (the superclass) and zero or
more interfaces which it implements.

The members available at a class (i.e. that can be used by variables whose type is that
class) are those defined at a class, and those defined in superclasses.

A class may be marked final. final classes cannot be subclassed.

Fields

A field specifies a data item that belongs to the class:

1 var nSolutions:Int = 0;
2 public static val expectedSolutions =
3 [0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512];
4 val N:Int;

Fields may be mutable (var) or immutable (val). The type of a mutable field must
always be specified (it follows the name of the variable, and a “:”). A mutable field
may or may not be initialized. The type of an immutable field may be omitted if the
field declaration specifies an initializer. For instance, in the above fragment the type
Rail[Int] is inferred for the field expectedSolutions. The value of an immutable
field does not have to be specified through an initializer – as long as it is supplied in
every constructor for the class. However, if an initializer is not specified the type of the
field must be specified.

Fields may be instance or static. By default fields are instance fields, static fields are
marked with the flag static (as illustrated above). Every object has one copy of an
instance field. However, in each place, there is only one copy of each static field for all
instances of that class in the place. In X10 static fields are required to be immutable.

2.1. CORE OBJECT-ORIENTED FEATURES 11

Instance fields are inherited by subclasses. This means that an object always has
enough space for the instance fields of the class of which the object is an instance,
and all of the object’s superclasses.

A field defined in a class may be shadowed in a subclass if the subclass defines a field
with the same name (but possibly a different type). The value of a shadowed field can
always be accessed by using the qualifier super.

It is a compile-time error for a class to declare two fields with the same name.

Properties

A class may specify one or more properties. Properties are immutable instance fields
that can be used in constrained types §2.3.2. They are also distinguished from other
instance fields in that they are initialized in a particular way, through the invocation of
a property call during execution of the constructor §2.1.1 for the object or struct. It is
a compile time error for a constructor to have a normal execution path which does not
contain a property call.

To make the compile-time type-checking of constraints more tractable, X10 v 2.2.3
requires that the types of properties are “simpler” than the type of the class or struct
they occur in. Specifically, the graph formed with classes or structs as nodes and an
edge from node v to node w if the class or struct corresponding to v has a field whose
base type is w cannot have cycles. One consequence of this restriction is that if a class
or struct has a type parameter T, then the type of a field cannot be T.

Methods

A method is a named piece of code, parametrized by zero or more variables (the pa-
rameters). A method may be void – in which case it returns no value and is usually
called just for its effect on the store – or it may return a value of a given type.

A method may have one or more type parameters; such a method is said to be type
generic. A method may have a method guard : the guard may specify constraints on
the type parameters.

The signature of a method consists of its name and the types of its arguments. A class
may not contain two methods whose signatures are the same. Additionally, a method
specifies a return type.

A value e may be returned from the body of a method by executing a return e;
statement. The return type of a method may be inferred in X10 (that is, it does not
need to be explicitly supplied by the user). It is the least upper bound of the types of
all expressions e where the body of the method contains a return e statement.

Methods may be instance methods or static methods. By default methods are instance
methods. Methods are marked static by using the qualifier static.

Consider the code in Table 2.1. The methods safe(j:Int), search(R:Region(1))
and search() are instance methods. The instance methods of a class are available for

12 CHAPTER 2. X10 BASICS

1 class Board {
2 val q: Rail[Int];
3 def this() {
4 q = new Rail[Int](0, (Int)=>0);
5 }
6 def this(old: Rail[Int], newItem:Int) {
7 val n = old.size;
8 q = new Rail[Int](n+1, (i:Int)=> (i < n? old(i) : newItem));
9 }

10 def safe(j: Int) {
11 val n = q.size;
12 for ([k] in 0..(n−1)) {
13 if (j == q(k) || Math.abs(n−k) == Math.abs(j−q(k)))
14 return false;
15 }
16 return true;
17 }
18 def search(R: IntRange) {
19 for (k in R)
20 if (safe(k))
21 new Board(q, k).search();
22 }
23

24 def search() {
25 if (q.size == N) {
26 nSolutions++;
27 return;
28 }
29 this.search(0..(N−1));
30 }
31 }

Table 2.1: NQueens Board

every object that is an instance of the class. Instance methods are invoked using the
syntax e.m(e1,..., en). e is said to be the receiver of the method invocation, and
e1,...,en the arguments.

Each expression in X10 has a static type(Section §2.3). The compiler reports an error
when processing a method invocation e.m(e1,..., en) if it cannot find precisely
one method named m on the static type of e which has n arguments and which is such
that the static type of ei is a subtype of the declared type of the ith argument.

The body of an instance method may access the state of the receiver (called the current
object) through the special variable this (Line 29). Unless there is risk of ambiguity,
the prefix “this.” may be omitted; thus the code can also be written as:

def search() {
for ([k] in R) searchOne(k);
}

2.1. CORE OBJECT-ORIENTED FEATURES 13

The code for static methods does not have an associated current object, and hence
cannot use this. Static methods are invoked by naming the class as the receiver, e.g.
NQueens.main(null).

Inheritance Methods may be inherited. That is, methods defined on superclasses are
available as methods on a subclass, unless they are overridden by another method dec-
laration with the same signature. Instance methods are said to be virtually dispatched:
this means that when a method is invoked on an object o that is an instance of class C,
the inheritance tree for C is searched (starting from C) for a method definition with the
same signature. The first definition found is executed. The type rules for X10 guarantee
that at runtime such a method will exist.

Overloading In X10 methods may be overloaded. This means that a class may have
multiple methods with the same name – of necessity they must have a different signa-
ture. These methods have nothing to do with each other.

Overloading is very convenient – it permits the programmer to use a method name
for some abstract concept and than provide instantiations of that concept for different
parameter types through different overloaded methods with the same name. The name
search is overloaded in Table 2.1, for instance.

Access control The qualifiers private, public, protectedmay be used to limit
access to a method. privatemethods may be accessed only by code in the same class.
public methods can be accessed from any code. protected methods can only be
accessed in the same class or its subclasses. If no qualifier is provided, a method can
be accessed by code in the same package (it is said to be package protected).

Constructors

A class may specify zero or more constructors. For instance:

1 def this() { this(8);}
2 def this(N:Int) { this.N=N;}

Constructors may be overloaded just like methods. The qualifiers private, public,
protected may be used to limit access to a constructor.

Instances of a class are created by invoking constructors using the new expression:

new Board(q, k)

The compiler declares an error if it cannot find a constructor for the specified class with
the same number of formal arguments such that the formal type of each argument is a
supertype of the type of each actual argument.

14 CHAPTER 2. X10 BASICS

If a class does not have a constructor an implicit constructor is created. If the class has
no properties then the implicit constructor is of the form:

def this() {}

If the class has properties x1:T1, . . . , xn:Tn then the implicit constructor is of the
form:

def this(x1:T1,...,xn:Tn) {
property(x1,...,xn);

}

2.1.2 Structs

An object is typically represented through handles, indirect references to a contiguous
chunk of data on the heap. The space allocated for an object typically consists of space
for its fields and space for a header. A header contains some bytes of data that represent
meta-information about the object, such as a reference to the table of methods used to
implement virtual dispatching on the object. X10 also permits the definition of structs,
which are different.

A struct is a “header-less” object. It can be represented by exactly as much mem-
ory as is necessary to represent the fields of the struct (modulo alignment constraints)
and with its methods compiled to “static” methods. This is accomplished by imposing
certain restrictions on structs (compared to objects). A struct definition is just like
a class definition except that it is introduced by the keyword struct rather than by
class. Like a class, a struct may define zero or more fields, constructors and methods
and may implement zero or more interfaces. However, a struct does not support inher-
itance; it may not have an extends clause. A struct may not be recursive: that is, there
can be no cycles in the graph whose nodes are struct definitions and whose edges from
a to b record that the struct a has a field of type (struct) b.

For instance the struct:

1 package examples;
2 public struct Complex(re:Double, im:Double){}

defines a Complex struct, instances of which can be represented by exactly two dou-
bles. An Array[Complex] with N elements can be implemented (in the Native back-
end) with a block of memory containing 2*N doubles, with each Complex instance
inlined.

X10 does not support any notion of a reference to a struct. Structs are passed by
value. Equality == on structs is defined as point-wise equality on the fields of the
struct. Further, structs are immutable; no syntax is provided to update fields of a struct

2.2. STATEMENTS 15

in place. While these decisions simplify the language, they make it awkward to express
certain kinds of code, hence mutability and references to structs may be introduced in
future versions of the language.

2.1.3 Function literals

X10 permits the definition of functions via literals. Such a literal consists of a parame-
ter list, followed optionally by a return type, followed by =>, followed by the body (an
expression).

For instance the function that takes an argument i that is an Int and returns old(i) if
i < n and newItem otherwise, is written as:

(i:Int) => (i < n ? old(i) : newItem)

The type of this value is (Int)=>Int. Note that the return type is inferred in the above
definition. We could also have written it explicitly as:

(i:Int):Int => (i < n ? old(i) : newItem)

For instance:

(a:Int) => a // the identity function on Int’s
(a:Int, b:Int):Int => a < b ? a : b // min function

Above, the type of the first value is (Int)=>Int, the type of functions from Int to
Int. The type of the second is (Int,Int)=>Int.

A function is permitted to access immutable variables defined outside its body (such
functions are sometimes called closures). Note that the immutable variable may itself
contain an object with mutable state.

The return type can often be omitted – it is inferred to be the type of the return expres-
sion.

If x is a function value of type (S1, ..., Sn) => T, and s1, ..., sn are values
of the given types, then x(s1,...,sn) is of type T.

2.2 Statements

The sequential statements of X10 should be familiar from Java and C++.

16 CHAPTER 2. X10 BASICS

Assignment.

The statement x=e evaluates the expression e and assigns it to the local variable x.

The statement d.f=e evaluates d to determine an object o. This object must have a
field f that is mutable. This value is changed to the value obtained by evaluating e.

In both cases the compiler checks that the type of the right hand side expression is a
subtype of the declared type.1

Conditionals.

if (c) then S else S. The first branch is executed if the condition c evaluates to
true, else the second branch is executed. One-armed conditionals are also permitted
(the else S may be dropped).

While loops.

while (c) S. The condition c is evaluated. If it is true, the body S is executed, and
the control returns to the top of the loop and the cycle of condition evluation and body
execution repeats. Thus the loop terminates only when the condition evaluates to false.

A while loop may be labeled l: while (c) S (just as any other statement). The
body of a while loop may contain the statements continue l; and break l;. The
first causes control to jump to the top of the loop labeled l, i.e. the rest of the code in
the body of the loop following the continue l; statement is not executed. break l;
causes control to jump after the loop labeled l (that is, control exits from that loop).

For loops.

X10 supports the usual sort of for loop. The body of a for loop may contain break
and continue statements just like while loops.

Here is an example of an explicitly enumerated for loop:
1 def sum0(a:Rail[Int]):Int {
2 var result:Int=0;
3 for (var x:Int=0; x < a.size; ++x)
4 result += a(x);
5 return result;
6 }

X10 also supports enhanced for loops. The for loop may take an index specifier v in
r, where r is any value that implements x10.lang.Iterable[T] for some type T.
The body of the loop is executed once for every value generated by r, with the value
bound to v.

1If it is not, the compiler tries to first check for user-defined coercions. Only if it cannot find one does it
declare an error. See the Language Manual for more details.

2.2. STATEMENTS 17

1 def sum1(a:Rail[Int]):Int {
2 var result:Int=0;
3 for (v in a.values())
4 result += v;
5 return result;
6 }

Of particular interest is IntRange. The expression e1 .. e2 produces an instance
of IntRange from l to r if e1 evaluates to l and e2 evaluates to r. On
iteration it enumerates all the values (if any) from l to r (inclusive). Thus we can
sum the numbers from 0 to N:

1 def sum2(N:Int):Int {
2 var result:Int=0;
3 for (v in 0..N) result +=v;
4 return result;
5 }

One can iterate over multiple dimensions at the same time using Region. A Region
is a data-structure that compactly represents a set of points. For instance, the region
(0..5)*(1..6) is a 2-d region of points (x,y) where x ranges over 0..5 and y
over 1..6. (The bounds are inclusive.) The natural iteration order for a region is
lexicographic. Thus one can sum the coordinates of all points in a given rectangle:

1 def sum3(M:Int, N:Int):Int {
2 var result:Int=0;
3 for ([x,y] in (0..M)∗(0..N))
4 result += x+y;
5 return result;
6 };

Here the syntax [x,y] is said to be destructuring syntax; it destructures a 2-d point
into its coordinates x and y. One can write p[x,y] to bind p to the entire point.

Throw statement.

X10 has a non-resumptive exception model. This means that an exception can be
thrown at any point in the code. In X10 2.2.3, all exceptions are unchecked. This
means that methods do not need to explictly declare the set of exceptions that they may
raise.

Throwing an exception causes the call stack to be unwound until a catcher can be
found (see below). If no catcher can be found the exception is thrown to the closest
dyamically enclosing finish surrounding the throw point.

18 CHAPTER 2. X10 BASICS

Try catch statement.

A try/catch/finally statement works just as in Java. It permits exceptions to be
caught (through a catch clause) and computation resumed from the point of capture.
A finally clause specifies code that must be run whenever control exits the try block
– regardless of whether the return is normal or exceptional.

Return statement.

The statement return; causes control to return from the current method. The method
must be a void method. The statement return e; causes control to return from the
current method with the value e.

A description of the other control constructs may be found in [26].

2.3 Types

X10 is a statically type-checked language. This means that the compiler checks the
type of each expression, and ensures that the operations performed on an expression
are those that are permitted by the type of the expression.

The name C of a class or interface is the most basic form of a type in X10. X10 also
supports

• generic types (e.g. Array[Int]) that take types as parameters,

• constrained types (e.g. Array{self.rank==1}) that specify an additional con-
straint on the properties of the base type,

• nested types (e.g. MyArray[T].Reducer

• functional type (e.g. (Int)=>Int.

A type specifies a set of members (fields, methods, constructors) that are defined on
expressions of that type.

The availability of members of a type also depends on the accessibility relation. That
is, a member of a type may be defined but not accessible (e.g. it is marked private).

A variable of a type S can only be assigned values whose static type T is the same as S
or is a subtype of S.

A type C is a subtype of type E if there is some type D such that C is a subtype of D and
D is a subtype of E.

If (class or interface) C[X1,...,Xm] extends or implements type D[S1,..., Sn]
(for m and n non-negative integers) then for every mapping A from type variables to
types, the type obtained by applying A to C[X1,...,Xm] is a subtype of the type ob-
tained by applying A to D[S1,...,Sn].

2.3. TYPES 19

A constrained type C{c} is a subtype of D{d} if C is a subtype of D and c implies d.

A nested type A.B is a subtype of C.D if A is the same as C and B is a subtype of D.

A function type (A1,...,Am)=>B is a subtype of (D1,...,Dn)=>E if m=n, Di is a
subtype of Ai (for i in 1..n) and B is a subtype of E.

2.3.1 Generic types

X10 permits generic types. That is a class or interface may be declared parametrized
by types:

1 class List[T] {
2 var item:T;
3 var tail:List[T]=null;
4 def this(t:T){item=t;}
5 }

This specifies that the class definition actually specifies an infinite family of classes,
namely those obtained by replacing the type parameter T with any concrete type. For
instance, List[Int] is the class obtained by replacing T in the body of the class with
Int:

1 class List_Int {
2 var item:Int;
3 var tail:List_Int=null;
4 def this(t:Int){item=t;}
5 }

Clearly generic types are very convenient – after all they let you figure out the code of
the class once, and then use it an unbounded number of times ... in a type-safe fashion.

X10 types are available at runtime, unlike Java (which erases them). Therefore, Ar-
ray[Int] and Array[Float] can be overloaded. X10 does not have primitive types and
Int etc. can be used to instantiate type parameters. Bounds may be specified on type
parameters and methods can be invoked on variables whose type is that parameter, as
long as those methods are defined and accessible on the bound.

2.3.2 Constrained types

Constrained types are a key innovation of X10.

A constrained type is of the form T{c} where T is a type and c is a Boolean expression
of a restricted kind. c may contain references to the special variable self, and to any
final variables visible at its point of definition.

Such a type is understood as the set of all entities o which are of type T and satisfy the
constraint c when self is bound to o.

20 CHAPTER 2. X10 BASICS

The permitted constraints include the predicates == and !=. These predicates may be
applied to constraint terms. A constraint term is either a final variable visible at the
point of definition of the constraint, or the special variable self or of the form t.f
where f names a field, and t is (recursively) a constraint term. In a term self.p p
must name a property of self.

Examples:

Matrix[Int]{self.I==100, self.J==200} // 100 x 200 matrix
Matrix[Int]{self.I==self.J} // the type of square matrices.

Constraints may also include occurrences of user-defined predicates. See [26] for de-
tails.

2.3.3 Type definitions

A type definition permits a simple name to be supplied for a complicated type, and for
type aliases to be defined. A type definition consists of a name, an optional list of type
parameters, an optional list of (typed arguments), an “=” symbol, followed by a type in
which the type parameters and arguments may be used.

For instance the type definition:

public static type boolean(b:Boolean) = Boolean{self==b};

permits the expression boolean(true) to be used as shorthand the type Boolean{self==true}.
X10 permits top-level type definitions. A type definition with principal name N must
be defined in the file N.x10. Example:

1

2 package examples;
3 public class Matrix[T](I:Int,J:Int) {
4

5 }
6 type Matrix[T](I:Int,J:Int)=Matrix[T]{self.I==I,self.J==J};

Note that a file may contain a type definition all by itself. This is the case for Rail.x10:

1 public type Rail[T]=Array[T]{self.rank==1,self.zeroBased,self.rect,self.rail};

3 The APGAS model

In this chapter, we cover the APGAS constructs in X10 v2.2.3.

3.1 Async

The fundamental concurrency construct in X10 is async:

Stmt ::= async Stmt

The execution of async S may be thought of as creating a new activity to execute S
and returning immediately. The newly created activity runs in parallel with the current
activity and has access to the same heap of objects as the current activity. Thus an
X10 computation may have many concurrent activities “in flight“ at the same time.
Activities communicate with each other by reading and writing shared variables, e.g.
fields of objects that both have access to.

An activity may be thought of as a very light-weight thread of execution. This means
that the statement S may in fact contain just a few instructions, e.g. reading the value
of a variable, performing some computation and then writing the value of a variable.
There is no restriction on the statement S – it may contain any other construct (including
other asyncs). In particular, activities may be long-running – indeed they may run for
ever. In particular they make invoke recursive methods. Hence an activity is associated
with its own control stack.

Activities (unlike threads in Java) are not named. There is no runtime object corre-
sponding to an activity that is visible to user programs. This permits the implementa-
tion the freedom to actually not create a separate activity for each async at runtime as
long as the semantics of the language are not violated. For instance, the compiler may
decide to translate the program fragment:

1 async { f.x=1;}
2 f.y=2;

to

21

22 CHAPTER 3. THE APGAS MODEL

1 f.x=1;
2 f.y=2;

This is called “inlining” an activity. It becomes much harder for a compiler to inline
if activities can have names – for, to inline the activity the compiler will need to figure
out that the name is not used later.

Activities cannot be interrupted or aborted once they are in flight. They must proceed
to completion.

In async S, the code in S is permitted to refer to immutable variables defined in the
lexically enclosing scope. This is extremely convenient when writing code.

Local vs Global termination Because an activity may spawn further activities, we
distinguish between local termination and global termination. We say that an activity
async S has locally terminated if S has terminated. We say that it has globally termi-
nated if it has locally terminated and further any activities spawned during its execution
have themselves (recursively) globally terminated.

3.2 Finish

finish is a construct that converts global termination to local termination.

Using async we can specify that the elements of a rail should be doubled in parallel by:
1 // Initialize the i’th element to i.

2 val a:Rail[Int] = new Rail[Int](N, (i:Int)=>i);
3 // Asynchronously double every element of the array

4 for(i in 0..(a.size−1))
5 async a(i) ∗= 2;
6 }

Consider now what happens if we attempt to read the value of a location:
1 // Initialize the i’th element to i.

2 val a:Rail[Int] = new Rail[Int](N, (i:Int)=>i);
3 // Asynchronously double every element of the array

4 for(i in 0..(a.size−1))
5 async a(i) ∗= 2;
6 Console.OUT.println("a(1)=" + a(1));
7 }

Will it print out 1 or 2? We cannot say! The activity executing a(1) *= 2may not have
terminated by the time the current activity starts executing the print statement!

This is a fundamental problem. The programmer needs a mechanism for specifying
ordering of computations. To this end we introduce the finish statement:

3.2. FINISH 23

Stmt ::= finish Stmt

An activity executes finish S by executing S and then waiting until all activities
spawned during the execution of S (transitively) terminate. Simple, but powerful!

To ensure proper termination of an X10 program, the mainmethod is executed within a
finish. Thus the program terminates only when the main method globally terminates.
This property ensures that for every activity created during program execution there is
a corresponding finish statement that will be notified of its termination. We say the
activity tree is rooted.

We can now write our program as follows:

1 // Initialize the i’th element to i.

2 val a:Rail[Int] = new Rail[Int](N, (i:Int)=>i);
3 // Asynchronously double every element of the array

4 finish for(i in 0..(a.size−1))
5 async a(i) ∗= 2;
6 Console.OUT.println("a(1)=" + a(1));
7 }

and be guaranteed that the output will be 2. Notice that little needs to change in the
program – we just add finish and async at the right place!

Table 3.1 shows how the Fibonacci program can be written in parallel. It uses an idiom
that is of interest in many other settings. The natural functional way to write fib is
through a recursive function call:

1 def fib(n:Int):Int = (n <=2)? 1: fib(n−1)+fib(n−2);

The value is returned on the activity’s stack. However, we are interested in running
fib in parallel, and hence we will want a way by which multiple activities can invoke
multiple fib calls, each in their own stack. X10 does not permit the call stack of one
activity to be shared by another, or the code running during the execution of an activity
to read/write the local variables in a stack frame of another activity.1

Table 3.1 presents a slightly more verbose Fibonacci program that makes explicit the
interaction of activities through objects on the heap. A heap object is created for each
recursive invocation of fib. The object has a single field which initially contains the
input argument to the call, and on return contains the result of the call.

Note that the program illustrates that during execution finish and asyncmay be scoped
arbitrarily: the body of an async can contain finish statements, and the body of a
finish can contain async statements. This interplay is at the heart of the expressiveness
of the async/finish model.

1Why? Because in general this is not a safe operation. The stack frame being referred to may not exist
any more!

24 CHAPTER 3. THE APGAS MODEL

1 public class Fib {
2 var n:Int=0;
3

4 def this(n:Int) {this.n = n;}
5

6 def fib() {
7 if (n <= 2) {
8 n=1;
9 return;

10 }
11 val f1=new Fib(n−1);
12 val f2=new Fib(n−2);
13 finish {
14 async f1.fib();
15 f2.fib();
16 }
17 n=f1.n+f2.n;
18 }
19

20 public static def main(args:Rail[String]) {
21 if (args.size < 1) {
22 Console.OUT.println("Usage: Fib <n>");
23 return;
24 }
25 val n = Int.parseInt(args(0));
26 val f = new Fib(n);
27 f.fib();
28 Console.OUT.println("fib(" + n + ")= " + f.n);
29 }
30 }

Table 3.1: Fib

3.3. ATOMIC 25

3.2.1 The rooted exception model

X10 supports a rooted exception model. Any exception thrown inside an activity can
be caught and handled within the activity by executing a try/catch statement. What
happens if there is no try/catch?

The rooted model offers an answer. Since every activity has a governing finish, we let
the exception propagate up from the activity to the governing finish. When executing
a finish S statement, all exceptions thrown by activities spawned during the execution
of S are accumulated at the finish statement. If at least one exception has been received
at the finish statement, then it throws a MultipleExceptions exception with the set
of exceptions as an argument. This ensures that no exception gets dropped on the floor
(unlike Java).

3.3 Atomic

Consider a parallel version of the Histogram program:
1 def hist(a:Rail[Int], b: Rail[Int]) {
2 finish for(i in 0..(a.size−1)) async {
3 val bin = a(i)% b.size;
4 b(bin)++;
5 }
6 }

However, this program is incorrect! Why? Multiple activities executing b(bin)++may
interfere with each other! The operation d++ is not an atomic operation.

An atomic operation is an operation that is performed in a single step with respect to
all other activities in the system (even though the operation itself might involve the
execution of multiple statements). X10 provides the conditional atomic statement as a
basic statement:

Stmt ::= when (c) Stmt

Here c is a condition, called the guard of the statement. An activity executes when (c)
S atomically – in a single step – provided that the condition c is satisfied. Otherwise it
blocks (waiting for the condition to be true).

The conditional atomic statement is an extremely powerful construct. It was introduced
in the 1970s by Per Brinch Hansen and Tony Hoare under the name “conditional critical
region”. This is the only construct in X10 that permits one activity to block waiting for
some other set of activities to establish some condition on shared variables.

This construct has an important special case. The statement atomic S is just shorthand
for when (true) S.

Since the construct is so powerful, it is subject to several conditions for ease of imple-
mentation.

26 CHAPTER 3. THE APGAS MODEL

• The condition c must be sequential, non-blocking, and local. That is, it must not
spawn new activities (contain a async or finish), it must not itself call a when,
and it must not access remote locations (contain an at).

• The statement S must be also be sequential, non-blocking, and local.

• The condition cmay be evaluated an arbitrary number of times by the X10 sched-
uler to determine if it returns true. Therefore it should be side-effect free and as
simple as possible.

The first two restrictions are enforced dynamically: while executing either the condi-
tion or the statement if the program attempts to execute a async, at, finish, or when
then an IllegalOperationException will be raised. The last restriction is currently
not enforced by X10.

The Histogram problem can now be solved correctly:

1 def hist(a:Rail[Int], b: Rail[Int]) {
2 finish for(i in 0..(a.size−1)) async {
3 val bin = a(i)% b.size;
4 atomic b(bin)++;
5 }
6 }

A parallel N-Queens program is given in Table 3.2

3.4 Places

We come now to a central innovation of X10, the notion of places. Places permit the
programmer to explicitly deal with notions of locality.

3.4.1 Motivation

Locality issues arise in three primary ways.

First, consider you are writing a program to deal with enormous amounts of data – say
terabytes of data, i.e. thousands of gigabytes. Now you may not have enough main
memory on a single node to store all this data – a single node will typically have tens
of gigabytes of main storage. So therefore you will need to run your computation on a
cluster of nodes: a collection of nodes connected to each other through some (possibly
high-speed) interconnect. That is, your single computation will actually involve the
execution of several operating system level processes, one on each node. Unfortunately,
acccessing a memory location across a network is typically orders of magnitude slower
(i.e. has higher latency) than accessing it from a register on the local core. Further,
the rate at which data can be transferred to local memory (bandwidth) is orders of

3.4. PLACES 27

1 public class NQueensPar {
2 var nSolutions:Int = 0;
3 public static val expectedSolutions =
4 [0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512];
5 val N:Int;
6 def this(N:Int) { this.N=N;}
7 def start() {
8 finish new Board().search();
9 }

10 class Board {
11 val q: Rail[Int];
12 def this() {
13 q = new Rail[Int](0, (Int)=>0);
14 }
15 def this(old: Rail[Int], newItem:Int) {
16 val n = old.size;
17 q = new Rail[Int](n+1, (i:Int)=> (i < n? old(i) : newItem));
18 }
19 def safe(j: Int) {
20 val n = q.size;
21 for ([k] in 0..(n−1)) {
22 if (j == q(k) || Math.abs(n−k) == Math.abs(j−q(k)))
23 return false;
24 }
25 return true;
26 }
27 def search(R: IntRange) {
28 for (k in R) async
29 if (safe(k))
30 new Board(q, k).search();
31 }
32

33 def search() {
34 if (q.size == N) {
35 atomic nSolutions++;
36 return;
37 }
38 this.search(0..(N−1));
39 }
40 }
41 public static def main(args: Rail[String]) {
42 val n = args.size > 0 ? Int.parseInt(args(0)) : 8;
43 println("N=" + n);
44

45 val nq = new NQueensPar(n);
46 var start:Long = −System.nanoTime();
47 nq.start();
48 val result = nq.nSolutions==expectedSolutions(nq.N);
49 start += System.nanoTime();
50 start /= 1000000;
51 println("NQueens " + nq.N + " has " + nq.nSolutions + " solutions" +
52 (result? " (ok)" : " (wrong)") + " (t=" + start + "ms).");
53 }
54

55 static def println(s:String) {
56 Console.OUT.println(s);
57 }
58 }

Table 3.2: NQueens

28 CHAPTER 3. THE APGAS MODEL

magnitude higher than the rate at which it can be transferred to memory across the
cluster.

As with implicit parallelism, one could try to write extremely clever compilers and run-
times that try to deal with this memory wall implicitly. Indeed, this is the idea behind
distributed shared memory (DSM). The entire memory of a collection of processes is
presented to the programmer as a single shared heap. Any activity can read and write
any location in shared memory. However, there are no efficient implementations of
DSM available today. The primary conceptual issue is that the programmer has lost
control over decisions that can have orders of magnitude impact on performance of
their code. When looking at a single assignment statement a.f=e, the programmer has
no way of knowing whether this is going to take dozens of cycles or millions of cycles.

A second primary motivation arises from heterogeneity. Computer architects are look-
ing to boost computational power by designing different kinds of specialized cores,
each very good at particular kinds of computations. In general, these accelerators in-
teract with the main processor at arm’s length.

Two primary cases in point are the Toshiba-Sony-IBM Cell Broadband Engine (“Cell
processor” for short), and general-purpose graphical processing engines (GPGPUs for
short), from vendors such as NVidia and AMD. These provide an enormous boost in
computational power for particular kinds of regular loops at the cost of introducing
specialized hardware.

For instance, the Cell provides eight specialized processors (SPEs) on a single chip,
connected to each other through a high-speed (on-chip) bus. These processors may ex-
ecute many instructions in parallel (they have “single instruction multiple data”, SIMD,
instructions). However, data needs to be explicitly transfered from main memory to a
local cache on each SPE, operated upon, and then transfered back.

The third motivation is similar to the second, but involves only homogeneous cores.
Multiple cores may share precious resources, such as L1 and L2 cache. To improve
performance, it may make sense to bind activities to particular cores, in particular to
force certain groups of activities to work on the same cores so that they can amortize
the cost of cache misses (because they are operating on the same data). Or it may make
sense to bind them to different cores that do not share an L2 cache so that the execution
of one does not pollute the cache lines of the other.

3.4.2 The at construct

A place in X10 is a collection of data and activities that operate on that data. A pro-
gram is run on a fixed number of places. The binding of places to hardware resources
(e.g. nodes in a cluster, accelerators) is provided externally by a configuration file,
independent of the program.

Programs are typically written to operate on any number of places. The number of
places in a particular run of the program can be queried through Place.MAX PLACES.

In X10 v2.2.3 all places are uniform. In future versions of the language we will support
heterogeneity by permitting different kinds of places, with the ability to check the

3.4. PLACES 29

attributes of a place statically, and hence write code that depends on the kind of place
it is running on.
The primary construct for exposing places to the programmer is:

Stmt ::= at (p) Stmt

An activity executing at (p) S suspends execution in the current place. The object
graph G at the current place whose roots are all the variables V used in S is serialized,
and transmitted to place p, deserialized (creating a graph G′ isomorphic to G), an envi-
ronment is created with the variables V bound to the corresponding roots in G′, and S
executed at p in this environment. On local termination of S, computation resumes af-
ter at (p) S in the original location. The object graph is not automatically transferred
back to the originating place when S terminates: any updates made to objects copied
by an at will not be reflected in the original object graph.

The at statement is a reminder to the programmer that at this point communication may
potentially happen across the network. Therefore the programmer should be aware of
what values will be transmitted from the source to the destination place and also be
aware that any mutations to objects during the execution of S will only be visible at p

Because of this ability to shift the current place, at is said to be a place-shifting opera-
tion. It is the only control construct related to places in X10.

The indexical constant here can be used to determine the current place.
It is also possible to use at as an expression to do a computation and return a value to
the originating place.

Expr ::= at (p) { S; E }

Expr ::= at (p) E

In this variant of at, the value of E is serialized from p back to the originating place and
used as the value of the at expression.

3.4.3 GlobalRef

Of course the abstraction of a partitioned global address space without some means of
actually referring to objects in a different partition would not be of much use. Therefore
the X10 standard library provides the GlobalRef struct in the x10.lang package. Using
GlobalRef, the programmer can easily create cross-place references by capturing a
GlobalRef within an at statement.

The core API of GlobalRef is shown below. It has two operations: a constructor to
create a GlobalRef to encapsulate an object and a method to access the encapsulated
object, which is constrained via a method guard to only be applicable at the home Place
of the GlobalRef.

1 public struct GlobalRef[T](home:Place) {T <: Object} {
2

3 /**

30 CHAPTER 3. THE APGAS MODEL

4 * Create a GlobalRef encapsulating the given object of type T.

5 */

6 public native def this(t:T):GlobalRef[T]{self.home==here};
7

8 /**

9 * Return the object encapsulated in the GlobalRef.

10 * This method can only be invoked at the Place at which

11 * the GlobalRef was created.

12 */

13 public native operator this(){here == this.home}:T;
14

15 }

To access the encapsulated object, the programmer uses at to place-shift to the ref’s
home:

1 at (gr.home) {
2 val obj = gr();
3 // ...compute using obj...

4 }

In X10, the programmer must explicitly place-shift using at to access an object that
lives in another Place. Requiring an explicit at is a design choice that was made to
highlight for the programmer that at this point communication may potentially happen
across the network.

Table 3.3 shows some additional operations defined on the GlobalRef struct. These
functions encapsulate more efficient implemenetations of common idiomatic usages of
GlobalRef.

3.4.4 PlaceLocalHandle

Another useful abstraction for a partitioned global address space is that of an abstract
reference that can be resolved to a different object in each partition of the address space.
Such a reference should be both efficiently transmittable from one Place to another and
also be efficiently resolvable to its target object in each Place. A primary use of such
an abstraction is the definition of distributed data structures that need to keep a portion
of their state in each Place. In X10, the PlaceLocalHandle struct in the x10.lang
package provides such an abstraction. Examples of its usage can be found in virtually
all of the programming examples in the next part of this book.

3.4. PLACES 31

1 /**

2 * Unsafe native method to get value.

3 * Assumes here == this.home; however this is not enforced

4 * by a constraint because it would entail dynamic checks.

5 * Must only be called at this.home!

6 */

7 private native def localApply():T;
8

9 /**

10 * Evaluates the given closure at (this.home), passing as a

11 * parameter the object that is encapsulated by this GlobalRef.

12 * This is equivalent to the following idiom:

13 * if (here == this.home)

14 * return eval(this());

15 * else

16 * return at (this.home) eval(this());

17 * However, because it does not use a place constraint on the

18 * method, it avoids a dynamic place check on the first branch.

19 */

20 public native def evalAtHome[U](eval:(T)=> U):U;
21

22 /**

23 * If (this.home == here), returns the object that is

24 * encapsulated by this GlobalRef. If (this.home != here),

25 * returns a copy at the current place.

26 * This is equivalent to the following idiom:

27 * if (here == this.home)

28 * return this();

29 * else

30 * return at (this.home) this();

31 * However, because it does not use a place constraint on the

32 * method, it avoids a dynamic place check on the first branch.

33 */

34 public native def getLocalOrCopy():T;

Table 3.3: Advanced features of GlobalRef API

32 CHAPTER 3. THE APGAS MODEL

4 The X10 Performance Model

Programmers need an intuitive understanding of the performance characteristics of the
core constructs of their programming language to be able to write applications with
predictable performance. We will call this understanding a performance model for the
language. Desirable characteristics of a performance model include simplicity, predic-
tive ability, and stability across different implementations of the language. The per-
formance model should abstract away all non-essential details of the language and its
implementation, while still enabling reasoning about those details that do have signifi-
cant performance impact. Languages with straightforward mappings of language con-
structs to machine instructions usually have fairly straightforward performance models.
As the degree of abstraction provided by the language’s constructs and/or the sophis-
tication of its implementation increase, its performance model also tends to become
more complex.

In this chapter, we present an abridged version1 of the performance model for X10
v2.2.3 focusing on those aspects that are most relevant for the HPC programmer. Al-
though the rate of change of the X10 language has significantly decreased from earlier
stages of the project, the language specification and its implementations are still evolv-
ing more rapidly than production languages such as C++ and Java. Therefore, we
break this chapter into two logical sections: aspects that we believe are fundamental to
the language itself and aspects that are more closely tied to specific choices embodied
in the X10 v2.2.3 implementation and thus more likely to change in future versions.
The second logical section is presented simultaneously with a discussion of some of
the central implementation decisions embodied in the X10 v2.2.3 runtime system and
compiler.

4.1 Fundamental X10 Performance Model

The core language model of X10 is that of a type-safe object-oriented language. Thus
much of the core performance model is intended to be similar to that of Java. We
believe the Java performance model is generally well-understood. Therefore in this
section we focus on areas where the performance models for X10 and Java diverge or
where X10 has new constructs that do not trivially map to Java constructs.

1based on the discussion in [14]

33

34 CHAPTER 4. THE X10 PERFORMANCE MODEL

4.1.1 X10 Type System

The type systems of X10 and Java differ in three ways that have important conse-
quences for the X10 performance model. First, although X10 classes are very similar
to Java’s, X10 adds two additional kinds of program values: functions and structs. Sec-
ond, X10’s generic type system does not have the same erasure semantics as Java’s
generic types do. Third, X10’s type system includes constrained types, the ability to
enhance type declarations with boolean expressions that more precisely specify the
acceptable values of a type.

Functions in X10 can be understood by analogy to closures in functional languages or
local classes in Java. They encapsulate a captured lexical environment and a code block
into a single object such that the code block can be applied multiple times on different
argument values. X10 does not restrict the lifetime of function values; in particular they
may escape their defining lexical environment. Thus, the language implementation
must ensure that the necessary portions of the lexical environment are available for the
lifetime of the function object. In terms of the performance model, the programmer
should expect that an unoptimized creation of a function value will entail the heap
allocation of a closure object and the copying of the needed lexical environment into
that object. The programmer should also expect that trivial usage of closures (closures
that do not escape and are created and applied solely within the same code block) will
be completely eliminated by the language implementation via inlining of the function
body at the application site.

Structs in X10 are designed to be space-efficient alternatives to full-fledged classes.
Structs may implement interfaces and define methods and fields, but do not support
inheritance. Furthermore structs are immutable: a struct’s instance fields cannot be
modified outside of its constructor. This particular design point was chosen specif-
ically for its implications for the performance model. Structs can be implemented
with no per-object meta-data and can be freely inlined into their containing context
(stack frame, containing struct/object, or array). Programmers can consider structs as
user-definable primitive types, that carry none of the space or indirection overheads
normally associated with objects.

The X10 generic type system differs from Java’s primarily because it was designed to
fully support the instantiation of generic types on X10 structs without losing any of the
performance characteristics of structs. For example, x10.lang.Complex is a struct type
containing two double fields; x10.util.ArrayList[T] is a generic class that provides a
standard list abstraction implemented by storing elements of type T in a backing array
that is resized as needed. In Java, a java.util.ArrayList[Complex], would have a
backing array of type Object[] that contained pointers to heap-allocated Complex ob-
jects. In contrast, the backing storage for X10’s x10.util.ArrayList[Complex] is an
array of inline Complex structs without any indirection or other object-induced space
overheads. This design point has a number of consequences for the language imple-
mentations and their performance model. Much of the details are implementation-
specific so we defer them to Section 4.4 and to the paper by Takeuchi et al [32]. How-
ever, one high-level consequence of this design is generally true: to implement the
desired semantics the language implementation’s runtime type infrastructure must be

4.1. FUNDAMENTAL X10 PERFORMANCE MODEL 35

able to distinguish between different instantiations of a generic class (since instantia-
tions on different struct types will have different memory layouts).

Constrained types are an integral part of the X10 type system and therefore are intended
to be fully supported by the runtime type infrastructure. Although we expect many
operations on constrained types can be checked completely at compile time (and thus
will not have a direct runtime overhead), there are cases where dynamic checks may
be required. Furthermore, constrained types can be used in dynamic type checking
operations (as and instanceof). We have also found that some programmers prefer to
incrementally add constraints to their program, especially while they are still actively
prototyping it. Therefore, the X10 compiler supports a compilation mode where instead
of rejecting programs that contain type constraints that cannot be statically entailed
it, will generate code to check the non-entailed constraint at runtime (in effect, the
compiler will inject a cast to the required constrained type). When required, these
dynamic checks do have a performance impact. Therefore part of performance tuning
an application as it moves from development to production is reducing the reliance on
dynamic checking of constraints in frequently executed portions of the program.

4.1.2 Distribution

An understanding of X10’s distributed object model is a key component to the perfor-
mance model of any multi-place X10 computation. In particular, understanding how to
control what objects are serialized as the result of an at can be critical to performance
understanding.

Intuitively, executing an at statement entails copying the necessary program state from
the current place to the destination place. The body of the at is then executed us-
ing this fresh copy of the program state. What is necessary program state is precisely
defined by treating each upwardly exposed variable as a root of an object graph. Start-
ing with these roots, the transitive closure of all objects reachable by properties and
non-transient instance fields is serialized and an isomorphic copy is created in the des-
tination place. Furthermore, if the at occurs in an instance method of a class or struct
and the body of the at refers to an instance field or calls an instance method, this is
also implicitly captured by the at and will be serialized. It is important to note that an
isomorphic copy of the object graph is created even if the destination place is the same
as the current place. This design point was chosen to avoid a discontinuity between
running a program using a single place and with multiple places.

Serialization of the reachable object graph can be controlled by the programmer pri-
marily through injection of transient modifiers on instance fields and/or GlobalRefs.
It is also possible to have a class implement a custom serialization protocol2 to gain
even more precise control. An X10 implementation may be able to eliminate or oth-
erwise optimize some of this serialization, but it must ensure that any program visible
side-effects caused by user-defined custom serialization routines happen just as they
would have in an unoptimized program. Thus, the potential of user-defined custom

2 x10.io.CustomSerialization

36 CHAPTER 4. THE X10 PERFORMANCE MODEL

serialization makes automatic optimization of serialization behavior a fairly complex
global analysis problem. Therefore, the base performance model for object serial-
ization should not assume that the implementation will be able to apply serialization
reducing optimizations to complex object graphs with polymorphic or generic types.

The X10 standard library provides the GlobalRef, RemoteArray and RemoteIndexedMemoryChunk
types as the primitive mechanisms for communicating object references across places.
Because of a strong requirement for type safety, the implementation must ensure that
once an object has been encapsulated in one of these types and sent to a remote place via
an at, the object will be available if the remote place ever attempts to spawn an activity
to return to the object’s home place and access it. For the performance model, this
implies that cross-place object references should be managed carefully as they have
the potential for creating long-lived objects. Even in the presence of a sophisticated
distributed garbage collector [17] 3, the programmer should expect that collection of
cross-place references may take a significant amount of time and incur communication
costs and other overheads.

Closely related to the remote pointer facility provided by GlobalRef is the PlaceLocalHandle
functionality. This standard library class provides a place local storage facility in which
a key (the PlaceLocalHandle instance) can be used to look up a value, which may be
different in different places. The library implementation provides a collective opera-
tion for key creation and for initializing the value associated with the key in each place.
Creation and initialization of a PlaceLocalHandle is an inherently expensive opera-
tion as it involves a collective operation. On the other hand cross-place serialization
of a PlaceLocalHandle value and the local lookup operation to access its value in the
current place are relatively cheap operations.

4.1.3 Async and Finish

The async and finish constructs are intended to allow the application programmer to
explicitly identify potentially concurrent computations and to easily synchronize them
to coordinate their interactions. The underlying assumption of this aspect of the lan-
guage design is that by making it easy to specify concurrent work, the programmer
will be able to express most or all of the useful fine-grained concurrency in their ap-
plication. In many cases, they may end up expressing more concurrency than can be
profitably exploited by the implementation. Therefore, the primary role of the language
implementation is to manage the efficient scheduling of all the potentially concurrent
work onto a smaller number of actually concurrent execution resources. The language
implementation is not expected to automatically discover more concurrency than was
expressed by the programmer. In terms of the performance model, the programmer
should be aware that an async statement is likely to entail some modest runtime cost,
but should think of it as being a much lighter weight operation than a thread creation.

As discussed in more detail in Section 4.3, the most general form of finish involves
the implementation of a distributed termination algorithm. Although programmers can

3which is not available in Native X10 v2.2.3

4.2. X10 V2.2.3 IMPLEMENTATION OVERVIEW 37

assume that the language implementation will apply a number of static and dynamic
optimizations, they should expect that if a finish needs to detect the termination of
activities across multiple places, then it will entail communication costs and latency
that will increase with the number of places involved in the finish.

4.1.4 Exceptions

The X10 exception model differs from Java’s in two significant ways. First, X10 de-
fines a “rooted” exception model in which a finish acts as a collection point for any
exceptions thrown by activities that are executing under the control of the finish. Only
after all such activities have terminated (normally or abnormally) does the finish
propagate exceptions to its enclosing environment by collecting them into a single
MultipleExceptions object which it will then throw. Second, the current X10 lan-
guage specification does not specify the exception semantics expected within a single
activity. Current implementations of X10 assume a non-precise exception model that
enables the implementation to more freely reorder operations and increases the poten-
tial for compiler optimizations.

4.2 X10 v2.2.3 Implementation Overview

X10 v2.2.3 is implemented via source-to-source compilation to another language, which
is then compiled and executed using existing platform-specific tools. The rationale for
this implementation strategy is that it allows us to achieve critical portability, perfor-
mance, and interoperability objectives. More concretely, X10 v2.2.3 can be either
compiled to C++ or Java. The resulting C++ or Java program is then compiled by ei-
ther a platform C++ compiler to produce an executable or compiled to class files and
then executed on a cluster of JVMs. We term these two implementation paths Native
X10 and Managed X10 respectively.

Portability is important because we desire implementations of X10 to be available on
as many platforms (hardware/operating system combinations) as possible. Wide plat-
form coverage both increases the odds of language adoption and supports productivity
goals by allowing programmers to easily prototype code on their laptops or small de-
velopment servers before deploying to larger cluster-based systems for production.

X10 programs need to be capable of achieving close to peak hardware performance on
compute intensive kernels. Therefore some form of platform-specific optimizing com-
pilation is required. Neither interpretation nor unoptimized compilation is sufficient.
However, by taking a source-to-source compilation approach we can focus our opti-
mization efforts on implementing a smaller set of high-level, X10-specific optimiza-
tions with significant payoff while still leveraging all of the classical and platform-
specific optimization found in optimizing C++ compilers and JVMs.

Finally, X10 needs to be able to co-exist with existing libraries and application frame-
works. For scientific computing, these libraries are typically available via C APIs;

38 CHAPTER 4. THE X10 PERFORMANCE MODEL

X10 Compiler Front End and Common Optimizer

X10 Application Front End
AST-based optimizations

AST- Lowering

Java Back EndNative Back End

X10 AST

Java.cu

X10 AST

JVM

g++/xlC javac

BytecodeExecutable

X10 Runtime
 C++ Natives

X10 Runtime
Java Natives

X10RT

Native Backend Java Backend

C++

CUDA

X10 Class Libs

X10RT

X10 Runtime
In X10

Figure 4.1: X10 Compiler Architecture

therefore Native X10 is the best choice. However, for more commercial application
domains existing code is often written in Java; therefore Managed X10 is also an es-
sential part of the X10 implementation strategy.

The overall architecture of the X10 compiler is depicted in Figure 4.1. This compiler
is composed of two main parts: an AST-based front-end and optimizer that parses X10
source code and performs AST based program transformation; Native/Java backends
that translate the X10 AST into C++/Java source code and invokes a post compilation
process that either uses a C++ compiler to produce an executable binary or a Java
compiler to produce bytecode.

Using source-to-source compilation to bootstrap the optimizing compilation of a new
programming language is a very common approach. A multitude of languages are im-
plemented via compilation to either C/C++ and subsequent post-compilation to native
code or via compilation to Java/C# (source or bytecodes) and subsequent execution on
a managed runtime with an optimizing JIT compiler. An unusual aspect of the X10
implementation effort is that it is pursuing both of these paths simultaneously. This
decision has both influenced and constrained aspects of the X10 language design (con-
sideration of how well/poorly a language feature can be implemented on both backends
is required) and provided for an interesting comparison between the strengths and lim-
itations of each approach. It also creates some unfortunate complexity in the X10
performance model because the performance characteristics of C++ and Java imple-
mentations are noticeably different.

4.3. X10 V2.2.3 RUNTIME 39

X10 Application Program

X10 Core
Class Libraries

XRX Runtime

X10 Language Native Runtime

X10RT

PAMI DCMF MPI

X
10

 R
u

n
tim

e

TCP/IP

Figure 4.2: X10 Runtime Architecture

4.3 X10 v2.2.3 Runtime

Figure 4.2 depicts the major software components of the X10 runtime. The runtime
bridges the gap between X10 application code and low-level facilities provided by the
network transports (PAMI etc.) and the operating system. The lowest level of the X10
runtime is X10RT which abstracts and unifies the capabilities of the various network
layers to provide core functionality such as active messages, collectives, and bulk data
transfer.

The core of the runtime is XRX, the X10 Runtime in X10. It implements the primitive
X10 constructs for concurrency and distribution (async, at, finish, atomic, and when).
The X10 compiler replaces these constructs with calls to the corresponding runtime ser-
vices. The XRX runtime is primarily written in X10 on top of a series of low-level APIs
that provide a platform-independent view of processes, threads, primitive synchroniza-
tion mechanisms (e.g., locks), and inter-process communication. For instance, the

40 CHAPTER 4. THE X10 PERFORMANCE MODEL

x10.lang.Lock class is mapped to pthread mutex (resp. java.util.concurrent.locks.ReentrantLock)
by Native X10 (resp. Managed X10).

The X10 Language Native Runtime layer implements the object-oriented features of
the sequential X10 language (dynamic type checking, interface invocation, memory
management, etc.) and is written in either C++ (Native X10) or Java (Managed X10).

The runtime also provides a set of core class libraries that provide fundamental data
types, basic collections, and key APIs for concurrency and distribution such as x10.util.Team
for multi-point communication or x10.array.Array.asyncCopy for large data transfers.

In this section, we review the specifics of the X10 v2.2.3 runtime implementation fo-
cusing on performance aspects.

4.3.1 Distribution

The X10 v2.2.3 runtime maps each place in the application to one process.4 Each
process runs the exact same executable (binary or bytecode).

Upon launch, the process for place 0 starts executing the main activity.

finish { main(args); }

Static fields. Static fields are lazily initialized in each place when they are first ac-
cessed. Both X10 v2.2.3 backend compilers map static fields initialized with compile
time constants to static fields of the target language. Other static fields are mapped
to method calls. The method checks to see if the field has already been initialized in
the current place, evaluates the initialization expression if it has not, and then returns
the value of the field. Therefore accessing a static field with a non-trivial initializa-
tion expression will be more modestly more expensive in X10 than the corresponding
operations in either C++ or Java.

X10RT. The X10 v2.2.3 distribution comes with a series of pluggable libraries for
inter-process communication referred to as X10RT libraries [43, 44]. The default
X10RT library—sockets—relies on POSIX TCP/IP connections. The standalone im-
plementation supports SMPs via shared memory communication. The mpi implemen-
tation maps X10RT APIs to MPI [19]. Other implementations support various IBM
transport protocols (DCMF, PAMI).

Each X10RT library has its own performance profile—latency, throughput, etc. For in-
stance, the X10 v2.2.3 standalone library is significantly faster than the sockets library
used on a single host.

The performance of X10RT can be tuned via the configuration of the underlying trans-
port implementation. For instance, the mpi implementation honors the usual MPI set-
tings for task affinity, fifo sizes, etc.

4The X10 v2.2.3 runtime may launch additional processes to monitor the application processes. These
helper processes are idle most of the time.

4.3. X10 V2.2.3 RUNTIME 41

Teams. The at construct only permits point-to-point messaging. The X10 v2.2.3
runtime provides the x10.util.Team API for efficient multi-point communication.

Multi-point communication primitives—a.k.a. collectives—provided by the x10.util.Team
API are hardware-accelerated when possible, e.g., broadcast on BlueGene/P. When no
hardware support is available, the Team implementation is intended to make a rea-
sonable effort at minimizing communication and contention using standard techniques
such as butterfly barriers and broadcast trees.

AsyncCopy. The X10 v2.2.3 tool chain implements at constructs via serialization.
The captured environment gets encoded before transmission and is decoded afterwards.
Although such an encoding is required to correctly transfer object graphs with alias-
ing, it has unnecessary overhead when transmitting immediate data, such as arrays of
primitives.

As a work around, the X10 v2.2.3 x10.array.Array class provides specific methods—
asyncCopy—for transferring array contents across places with lower overhead. These
methods guarantee the raw data is transmitted as efficiently as permitted by the underly-
ing transport with no redundant packing, unpacking, or copying. Hardware permitting,
they initiate a direct copy from the source array to the destination array using RDMAs.5

4.3.2 Concurrency

The cornerstone of the X10 runtime is the scheduler. The X10 programming model
requires the programmer to specify the place of each activity. Therefore, the X10
scheduler makes per-place decisions, leaving the burden of inter-place load balancing
to the library writer and ultimately the programmer.

The X10 v2.2.3 scheduler assumes a symmetrical, fixed number of concurrent execu-
tion units (CPU cores) per process for the duration of the execution. This assumption is
consistent with the HPCS context—job controllers typically assign concurrently run-
ning applications to static partitions of the available computing resources—but will be
relaxed in subsequent releases of X10.

Work-Stealing scheduler. The X10 v2.2.3 scheduler belongs to the family of work-
stealing schedulers [3, 11] with a help-first scheduling policy [15]. It uses a pool of
worker threads to execute activities. Each worker thread owns a double-ended queue of
pending activities. A worker pushes one activity for each async construct it encounters.
When a worker completes one activity, it pops the next activity to run from its deque.
If the deque is empty, the worker attempts to steal a pending activity from the deque of
a randomly selected worker.

Since each worker primarily interacts with its own deque, contention is minimal and
only arises with load imbalance. Moreover, a thief tries to grab an activity from the

5RDMA: remote direct memory access.

42 CHAPTER 4. THE X10 PERFORMANCE MODEL

top of the deque whereas the victim always pushes and pops from the bottom, further
reducing contention.

In X10 v2.2.3, the thief initially chooses a victim at random then inspects the deque of
every worker in a cyclic manner until it manages to steal a pending activity.

The X10 scheduler borrows the deque implementation of Doug Lea’s Fork/Join frame-
work [18].

Life cycle. A worker may be in one of four states:

running one activity,

searching for an activity to execute,

suspended because the activity it is running has executed a blocking construct, such
as finish or when, or method, such as System.sleep or x10.util.Team.barrier,

stopped because there are already enough workers running or searching.

Suspended and stopped workers are idle. Starting in X10 v2.2.3, the runtime will
mostly suspend excess idle workers, but even if the place is entirely inactive the runtime
still requires one worker to be polling the network (i.e., busy waiting) to respond to
incoming messages. We expect that at least for some x10rt implementations that in
later X10 release it will be possible to eliminate the need for busy waiting entirely.

Cooperative scheduler. The X10 v2.2.3 scheduler never preempts a worker running
user code. The X10 v2.2.3 runtime is designed to enable achieving the highest possi-
ble performance on MPI-like distributed X10 applications where the programmer use
matching send and receive instructions to achieve total control over the communication
and execution schedule. If the user code never yields to the runtime then pending ac-
tivities (local or remote) are not processed. In other words, the runtime does not make
any fairness guarantee.

A worker may yield either by executing a blocking statement or by invoking the Run-
time.probe method. The latter executes all the pending activities at the time of the call
before returning to the caller. This includes all the pending remote activities—activities
spawned here from other places—and all the activities already in this worker deque, but
does not include activities in other deques.

Parallelism. The user can specify the number of workers in the pool in each place
using the X10 NTHREADS environment variable.6 The X10 v2.2.3 scheduler may create
additional threads during the execution. But it strives to maintain the number of non-
idle workers close to the requested value.

6Some X10RT libraries may internally use additional threads for network management. See documenta-
tion.

4.3. X10 V2.2.3 RUNTIME 43

• If a worker suspends, the scheduler wakes a stopped worker if available or allo-
cates and starts a new worker if not.

• If a suspended worker resumes, the scheduler preempts and stops a searching
worker if any.

• If there are more than X10 NTHREADS workers running then the scheduler pre-
empts and stops the first one who empties its deque.

As a result, the current scheduler guarantees the following properties that are intended
to hold for any X10 implementation.

1. If there are X10 NTHREADS pending activities or more then there are X10 NTHREADS
or more workers processing them, that is, running them or searching for them.

2. If there are “n < X10 NTHREADS” workers running user code then there are
“X10 NTHREADS− n” workers searching for pending activities.

3. If there are X10 NTHREADS or more workers running then there are no workers
spinning.

Property 1 is the goal of any work-stealing scheduler: assuming the effort of find-
ing pending activities is negligible, parallel activities are processed in parallel using
X10 NTHREADS parallel processing units.

Property 2 guarantees that available cores are used to find pending activities quickly.

Property 3 mitigates the penalty of busy waiting in the current implementation: spin-
ning workers are never getting in the way of the application provided the user makes
sure that X10 NTHREADS is at most equal to the number of hardware cores available
to the runtime for each place. For instance, if running 8 places on a 32-core node,
X10 NTHREADS must not be larger than 4 workers per place.

Joining. In order to minimize pool size adjustments, the scheduler implements one
key optimization. If a worker blocks on a finish construct but its deque is not empty,
it does not suspend but instead processes the pending activities from its deque. It only
eventually suspends if its deque becomes empty or if it reaches some other blocking
construct (different from finish). By design, the pending activities that get processed
by the worker in this phase must have been spawned from the blocked finish body.
In the X10 v2.2.3 implementation, the worker will not attempt to steal activities from
others if the finish construct is still waiting for spawned activities to terminate when the
deque gets empty as this would require to carefully pick activities the finish construct
is waiting for.

Thanks to this behavior, finish has much less scheduling overhead than other synchro-
nization mechanisms, e.g., when constructs, and should be preferred when possible.

While this optimization is typically very effective at improving performance without
observable drawbacks, it may lead to unbounded stack growth for pathological pro-
grams. Therefore, it may be disabled by setting the environment variable X10 NO STEALS.7

7The X10 NO STEALS flag essentially turns deep stacks into large collections of mostly-idle threads

44 CHAPTER 4. THE X10 PERFORMANCE MODEL

Overhead. For each async statement, the current worker must make work available
to other workers. In the best implementation and best case scenario (no contention) this
requires at least one CAS instruction8 per async. As a result, async constructs should
only be used to guard computations that require (significantly) more resources than a
CAS.

The X10 v2.2.3 runtime also allocates one small heap object per async. Again, any-
thing smaller than that should be executed sequentially rather than wrapped with an
async. Moreover, memory allocation and garbage collection can become a bottleneck
if vast amounts of activities are created concurrently. The runtime therefore exposes
the Runtime.surplusActivityCount method that returns the current size of the current
worker deque. Application and library code may invoke this method to decide whether
or not to create more asynchronous activities, as in:

if (Runtime.surplusActivityCount() >= 3) m(); else async m();

4.3.3 Synchronization

Finish. Within a place, one only needs to count activity creation and termination
events to decide the completion of a finish construct. The story is different across
places as inter-process communication channels are likely to reorder messages so that
termination events may be observed ahead of the corresponding creation events. The
X10 v2.2.3 implementation of finish keeps track of these events on an unambiguous,
per-place basis.

In the worst-case scenario, with p places, there will be p counters in each place, that is,
p× p counters for each finish. Moreover, there could be one inter-process message for
each activity termination event. Messages could contain up to p data elements.

In practice however much fewer counters, fewer messages, and smaller messages are
necessary thanks to various optimizations embedded in the X10 v2.2.3 implementation.
In particular, events are accumulated locally and only transmitted to the finish place
when local quiescence is detected—all local activities for this finish have completed.
Counters are allocated lazily. Messages use sparse encodings.

To complement these runtime mechanisms, the programmer may also specify finish
pragmas, which inform the runtime system about the kind of concurrent tasks that the
finish will wait for, as in:

@Pragma(Pragma.FINISH_ASYNC) finish at (p) async s;

Thanks to this information the runtime system will implement the distributed termina-
tion detection more efficiently.

Currently, the runtime system supports five finish pragmas:

with smaller stacks, avoiding stack overflow errors. But ultimately, this only matters to unscalable programs
of little practical relevance.

8CAS: compare-and-swap.

4.3. X10 V2.2.3 RUNTIME 45

FINISH ASYNC A finish for a unique async possibly remote.

FINISH LOCAL A finish with no remote activity.

FINISH SPMD A finish with no nested remote activities in remote activities. The
remote activities must wrap nested remote activities if any in nested finish blocks.

FINISH HERE A finish which does not monitor activity starting or finishing in re-
mote places. Useful for instance in a ping pong scenario where a remote activity
is first created whose last action is to fork back an activity at the place of ori-
gin. The runtime will simply match the creation of the “ping” activity with the
termination of the “pong” activity, ignoring both the termination of “ping” and
creation of “pong” at the remote place.

FINISH DENSE A scalable finish implementation for large place counts using indi-
rect routes for control messages so as to reduce network traffic at the expense of
latency.

For now, neither the compiler nor the runtime makes any attempt at checking the va-
lidity of the pragma. Therefore a pragma, if misused, may result in the spurious (early)
termination of the annotated finish or in a deadlock.

Uncounted Async. There are some situations in which an async may be annotated
with @Uncounted (from the x10.compiler package). This annotation tells the com-
piler and runtime not to perform any of the book-keeping necessary to ensure that the
governing finish progresses only after this async has terminated.

There are two principle cases in which the use of Uncounted is recommended. First,
the programmer may be able to establish that the lifetime of this async and all asyncs
spawned in its dynamic extent is contained within the lifetime of the current activity.
For instance one situation in which this happens is if the async corresponds to a re-
mote message send, and on the remote side the body of the message executes some
local operations and responds with a message send to the originator. In the mean-
time, the originator sits waiting in a loop for the return message (e.g. by executing
Runtime.probe(). This is a safe use of Uncounted (see §7).

The second situation is one in which the async corresponds to a message send directly
implemented in the hardware, and some other reasoning is used to establish that these
messages complete in time (see §6.2.3).

Atomic and When. The X10 v2.2.3 implementation of the atomic construct uses
a place-wide lock. The lock is acquired for the duration of the atomic section. The
when construct is implemented using the same lock. Moreover, every suspended when
statement is notified on every exit from an atomic section, irrespective of condition.

The per-place lock effectively serializes all atomic operation in a place whether they
might inerfere or not. This implementation does not scale well beyond a few worker

46 CHAPTER 4. THE X10 PERFORMANCE MODEL

threads. Similarly, the when implementation does not scale well beyond a few occur-
rences (distinct condition variables).

The X10 standard library provides various atomic classes and locks that enable better
scaling. Both the collecting finish idiom and the x10.util.WorkerLocalStorage API may
be also used to minimize contention.

4.4 X10 v2.2.3 Compilation

When an application programmer writes X10 code that they are intending to execute
using Native X10, their base performance model should be that of C++. Unless dis-
cussed below, the expected performance of an X10 language construct in Native X10
is the same as the corresponding C++ construct.

4.4.1 Classes and Interfaces

X10 classes are mapped to C++ classes and the compiler directly uses the C++ object
model to implement inheritance, instance fields, and instance methods. Interfaces are
also mapped to C++ classes to support method overloading, but the X10 implements
relationship is not implemented using the C++ object model. Instead, additional in-
terface dispatch tables (akin to ITables in Java9) are generated by the X10 compiler
“outside” of the core C++ object model. The motivation for this design decision was
to stay within the simpler, single-inheritance subset of C++ that minimizes per-object
space overheads and also preserves the useful property that a pointer to an object al-
ways points to the first word of the object and that no “this pointer adjustment” needs
to be performed on assignments or during the virtual call sequence.

Non-interface method dispatch corresponds directly to a C++ virtual function call. In-
terface method dispatch will involve additional table lookups and empirically is 3 to 5
times slower than a virtual function call. C++ compilers typically do not aggressively
optimize virtual calls, and will certainly not be able to optimize away the dispatch ta-
ble lookup used to implement interface dispatch. Therefore, as a general rule, non-final
and interface method invocations will not perform as well in Native X10 as they will
in Managed X10.

Unless specially annotated, all class instances will be heap allocated and fields/vari-
ables of class types will contain a pointer to the heap allocated object.

4.4.2 Primitives and Structs

The dozen X10 struct types that directly correspond to the built-in C primitive types
(int, float, etc.) are implemented by directly mapping them to the matching primitive
type. Any X10 level functions defined on this types are implemented via static inline

9see the description of “searched ITables” in Alpern et al. [1]

4.4. X10 V2.2.3 COMPILATION 47

methods. The performance characteristics of the primitive C++ types is exactly the
performance of their X10 counterparts.

All other X10 structs are mapped to C++ classes. However, all of the methods of the
C++ class are declared to be non-virtual. Therefore, the C++ class for a struct will not
include a vtable word. Unlike object instances, struct instances are not heap allocated.
They are instead embedded directly in their containing object or stack-allocated in the
case of local variables. When passed as a parameter to a function, a struct is passed
by value, not by reference. In C++ terms, a variable or field of some struct type S is
declared to be of type S, not S*.

This implementation strategy optimizes the space usage for structs and avoids indirec-
tions. Programmers can correctly think of structs as taking only the space directly im-
plied by their instance fields (modulo alignment constraints). However, passing structs,
especially large structs, as method parameters or return value is significantly more ex-
pensive than passing/returning a class instance. In future versions of X10 we hope to
be able to pass structs by reference (at the implementation level) and thus ameliorate
this overhead.

4.4.3 Closures and Function Types

An X10 function type is implemented exactly the same as other X10 interface types.
An X10 closure literal is mapped to a C++ class whose instance fields are the captured
lexical environment of the closure. The closure body is implemented by an instance
method of the C++ class. The generated closure class implements the appropriate
function type interface. Closure instances are heap allocated. If the optimizer is able to
propagate a closure literal to a program point where it is evaluated, the closure literal’s
body is unconditionally inlined. In many cases this means that the closure itself is
completely eliminated as well.

4.4.4 Generics

Generic types in X10 are implemented by using C++’s template mechanism. Compi-
lation of a generic class or struct results in the definition of a templatized C++ class.
When the generic type is instantiated in the X10 source, a template instantiation hap-
pens in the generated C++ code.

The performance of an X10 generic class is very similar to that of a similar C++ tem-
platized class. In particular, instantiation based generics enable X10 generic types
instantiated on primitives and structs to be space efficient in the same way that a C++
template instantiated on a primitive type would be.

4.4.5 Memory Management

On most platforms Native X10 uses the Boehm-Demers-Weiser conservative garbage
collector as its memory manager. A runtime interface to explicitly free an object is also

48 CHAPTER 4. THE X10 PERFORMANCE MODEL

available to the X10 programmer. The garbage collector is only used to automatically
reclaim memory within a single place. The BDWGC does not yield the same level of
memory management performance as that of the memory management subsystem of a
modern managed runtime. Therefore, when targeting Native X10 the application pro-
grammer may need to be more conscious of avoiding short-lived objects and generally
reducing the application’s allocation rate.

Because the X10 v2.2.3 implementation does not include a distributed garbage collec-
tor, if a GlobalRef to an object is sent to a remote place, then the object (and there-
fore all objects that it transitively refers to) become uncollectable. The life-time of all
multi-place storage must currently be explicitly managed by the programmer. This is
an area of the implementation that needs further investigation to determine what mix of
automatic distributed garbage collection and additional runtime interfaces for explicit
storage control will result in the best balance of productivity and performance while
still maintaining memory safety.

4.4.6 Other Considerations

In general, Native X10 inherits many of the strengths and weaknesses of the C++ per-
formance model. C++ compilers may have aggressive optimization levels available,
but rarely utilize profile-directed feedback. C++ compilers are generally ineffective
at optimizing non statically-bound virtual function calls. Over use of object-oriented
features, interfaces, and runtime type information is likely to reduce application per-
formance more in Native X10 than it does in Managed X10.

The C++ compilation model is generally file-based, rather than program-based. In
particular, cross-file inlining (from one .cc file to another) is performed fairly rarely
and only at unusually high optimization levels. Since the method bodies of non-generic
X10 classes are mostly generated into .cc files, this implies that they are not easily
available to be inlined except within their own compilation unit (X10 file). Although
for small programs, this could be mitigated by generating the entire X10 application
into a single .cc file, this single-file approach is not viable for the scale of applications
we need Native X10 to support.

4.5 Final Thoughts

Clearly, the performance models described in this chapter are not the final and definitive
X10 performance model. However, we do believe that the language specification and
its implementations are well-enough understood that it is possible for significant X10
programs to be written and for programmers to obtain predictable and understandable
performance behavior from those programs. As the X10 implementations continue to
mature, we expect to be able to eliminate some of the less desirable features of the X10
v2.2.3 performance models.

We hope that the open discussion of our design decisions in implementing X10 and
their implications for its performance will be useful to the X10 programmer community

4.5. FINAL THOUGHTS 49

and to the broader research community that is engaged in similar language design and
implementation projects.

50 CHAPTER 4. THE X10 PERFORMANCE MODEL

Part II

Programming Examples

51

53

In this part we discuss several of the PERCS benchmark and their implementation in
X10. The code for the benchmarks discussed here is a slight cosmetic variation of
the code actually run on the PERCS machine. Both the benchmark code [42] and the
X10 release [41] that was used to execute them on the PERCS machine have been
released. We discuss scalability issues, and outline performance considerations for
various idioms which motivate one way of realizing the problem in X10 versus another.

We are primarily interested in parallel efficiency. The parallel efficiency at P cores is
the number of operations performed per unit time by P cores, divided by the product
of P and the number of operations performed per unit time by a single core. Ideally
the ratio would be 1, in practice a ratio above 0.95 is considered good.

The benchmarks are discussed in two groups. §5 discusses the “Hello World” problem
and what it takes to write the code in such a way that it scales to tens of thousands of
cores. Also discussed is the HPC Streams benchmark. This tests that an X10 com-
putation can achieve the expected memory bandwidth. The implementation of this
benchmark discussed here uses X10 teams, and tests X10 support for huge pages and
for team broadcast.

§6 discusses several programs best expressed in the “Single Program Multiple Data”
(SPMD) style, and shows how this style can be expressed in X10. Discussed are:

1. RandomAccess (also called the “GUPS” benchmark): This benchmark measures
the capability of the tool-chain to saturate the network with read-modify-write
operations performed on remote memory. This is a valuable basic benchmark
that approximates the behavior of various distributed graph algorithms. The im-
plementation uses X10 teams, broadcasts, huge pages, and also uses custom
memory allocation for “congruent” distributed arrays (arrays scattered across
multiple places with the same local virtual memory address across all places).

2. KMeans: This is an unsupervised learning benchmark that can be expressed with
teams and broadcasts in X10.

3. FT: This is the 2-d “Fast Fourier Transform” benchmark. It requires significant
local computation and all-to-all communication. The benchmark is expressed in
X10 using teams, broadcasts and custom memory allocation.

4. LU: This benchmark implements the LU decomposition algorithm for matrices.
It uses teams, broadcasts, custom memory allocation, huge pages, also RDMA
transfer (through async copy), and pragmas.

Finally §7 discusses the Unbalanced Tree Search (UTS) benchmark. This measures the
ability of X10 to balance highly irregular work across many places.

The remaining two benchmarks – SSCA1 and SSCA2 – are not discussed since they
use essentially the same techniques discussed in the other benchmarks.

54

5 Basic Multi-Place Idioms

5.1 HelloWholeWorld

We will start by describing the X10 implementation of the APGAS extension to the
classic HelloWorld program: print one message to the console from every Place in the
computation. The code below shows how one can write this in X10:

1 /** An APGAS Hello; print a message at every place */

2 public class HelloWholeWorld {
3 /** //

4 * writes first argument to the console at each Place

5 * @param args the command line arguments

6 */ //

7 public static def main(args:Rail[String]) {
8 finish
9 for (p in Place.places())

10 at (p)
11 async
12 Console.OUT.println("(At " + p + ") : " + args(0));
13 }
14 }

The program may be read quite simply as: “At each place asynchronously print the
given string, and wait until they are all done.” In more detail, when this program is
executed, a single activity at place 0 starts executing the body of the main method, in
an environment in which args is bound to the array of strings read in from the command
line. This activity sets up a finish scope, and for each place p launches an activity
at that place. The body of this activity prints out a string formed from p and the first
argument passed in to the method.

Note that args is defined at place 0 but accessed from all places. The compiler and
run-time determined that args is a value at place 0 that is referenced within the body
of an at; hence the at is translated into a message with a payload that carries the value
of args. Similarly, the compiler will also determine that the value of p will need to be
included in the message payload.

One can improve this program by noticing that it is not necessary to transmit the entire
array args to other places; only its zero’th value is needed. Hence it is better to extract

55

56 CHAPTER 5. BASIC MULTI-PLACE IDIOMS

this value into a local variable and reference this variable from the body of the at. One
can also avoid the transmission of p entirely by replacing its use with the expression
here, which simply evaluates to the Place in which the activity is executing.

1 public static def main(args:Rail[String]) {
2 finish
3 for (p in Place.places()) {
4 val arg = args(0);
5 at (p)
6 async
7 Console.OUT.println("(At " + here + ") : " + arg);
8 }
9 }

10 }

The improved version of HelloWorld shown above will work well at moderate scale
(hundreds of places), but at larger scale will start to suffer reduced scalability because:

• the main activity running at place 0 is sequentially sending point-to-point mes-
sages to each other place. As the number of places increases, this activity will
become a sequential bottleneck.

• the runtime will by default use a general implementation of a multi-place finish.
However this particular code fragment is using a restricted form of parallelism
in which exactly one activity is being created at each place. This allows a spe-
cialized and significantly more scalable implementation of finish to be used
instead.

The simplest way of rewriting the program to scale well is to use some of the APIs
provided by the standard library class PlaceGroup as shown below:

1 // Option 1: Use built-in broadcast facility in PlaceGroup

2 {
3 val arg = args(0);
4 PlaceGroup.WORLD.broadcastFlat(()=>{
5 Console.OUT.println("(At " + here + ") : " + arg);
6 });

In this program, the work to be performed is bundled into a closure and passed as an
argument to the broadcastFlat method of the WORLD PlaceGroup. The implementa-
tion of this method will ensure that the closure is executed exactly once on each place
in the PlaceGroup before it returns. Although using this built-in facility is quite con-
venient, there may be reasons for the programmer to want to more explicitly express
the computation. Controlling the implementation of finish can be done via a pragma
mechanism, as shown below:

1 // Option 2: Use pragma to optimize finish implementation for better scalablity

2 val arg = args(0);
3 @Pragma(Pragma.FINISH_SPMD) finish

5.2. STREAM 57

4 for (p in Place.places())
5 at (p)
6 async
7 Console.OUT.println("(At " + here + ") : " + arg);

Here the pragma indicates that a finish implementation optimized for the special case
of a single activity per place should be used. To make the program fully scalable, it
is also necessary to parallalize the initial spawning of the activities, as shown by the
chunked loop below.

1 // Option 3: Parallelize initiation by chunking and use a pragma

2 // to optimize finish implementation for better scalablity.

3 // This is exactly how PlaceGroup.WORLD.broadcastFlat is implemented.

4 val arg = args(0);
5 @Pragma(Pragma.FINISH_SPMD) finish
6 for(var i:Int=Place.numPlaces()−1; i>=0; i−=32) {
7 at (Place(i))
8 async {
9 val max = Runtime.hereInt();

10 val min = Math.max(max−31, 0);
11 @Pragma(Pragma.FINISH_SPMD) finish
12 for (var j:Int=min; j<=max; ++j) {
13 at (Place(j))
14 async
15 Console.OUT.println("(At " + here + ") : " + arg);
16 }
17 }
18 }

This nested loop with two levels of finishes scales well. In fact this is exactly how the
broadcastFlat method of WORLD is implemented in the X10 standard library. How-
ever, it is significantly more complex than any of the previous variants of HelloWorld.
This complexity makes it harder to separate the core computation from the boilerplate
code needed to ensure scalable task initiation. Therefore we recommend using X10’s
support for function types and closures to define utility methods like broadcastFlat
to encapsulate scalable communication and concurrency patterns for use in application
general code.

5.2 Stream

5.2.1 Problem

The purpose of the Stream benchmark is to measure the sustainable memory band-
width and corresponding computation rate for simple vector kernels. It does this by
performing the caclulation a[i] = b[i] + Beta * c[i] over large vectors a, b, and c.

58 CHAPTER 5. BASIC MULTI-PLACE IDIOMS

5.2.2 Solution design

The implementation of this benchmark in X10 follows a straight-forward SPMD style
of programming. The main activity launches an activity at every place using the
broadcastFlat utility method described in the previous section. These activities then
allocate and initialize the arrays, perform the computation, and verify the results. To
maximize memory system performance, the backing storage for the arrays should be
allocated using huge pages to enable efficient usage of TLB entries.

5.2. STREAM 59

5.2.3 Code

The core of the X10 implementation of Stream is shown below; the utility methods now
for timing and printStats are elided.

1 static MEG = 1024∗1024;
2 static alpha = 3.0D;
3 static NUM_TIMES = 10;
4 static DEFAULT_SIZE = 64 ∗ MEG;
5 static NUM_PLACES = Place.MAX_PLACES;
6

7 static def makeHugeArray(size:Int)=
8 new Array[Double](IndexedMemoryChunk.allocateZeroed[Double](size,8,
9 IndexedMemoryChunk.hugePages()));

10

11 public static def main(args:Array[String](1)){here == Place.FIRST_PLACE} {
12 val verified = new Cell[Boolean](true);
13 val times = GlobalRef[Array[Double](1)](new Array[Double](NUM_TIMES));
14 val N0 = args.size>0? Int.parse(args(0)) : DEFAULT_SIZE;
15 val N = (N0 as Long) ∗ NUM_PLACES;
16 val localSize = N0;
17

18 Console.OUT.println("localSize=" + localSize);
19

20 PlaceGroup.WORLD.broadcastFlat(()=>{
21 val p = here.id;
22 val a = makeHugeArray(localSize);
23 val b = makeHugeArray(localSize);
24 val c = makeHugeArray(localSize);
25 for (var i:Int=0; i<localSize; i++) {
26 b(i) = 1.5 ∗ (p∗localSize+i);
27 c(i) = 2.5 ∗ (p∗localSize+i);
28 }
29

30 val beta = alpha;
31

32 for (var j:Int=0; j<NUM_TIMES; j++) {
33 if (p==0) {
34 val t = times as GlobalRef[Array[Double](1)]{self.home==here};
35 t()(j) = −now();
36 }
37 for (var i:Int=0; i<localSize; i++)
38 a(i) = b(i) + beta∗c(i);
39 Team.WORLD.barrier(here.id);
40 if (p==0) {
41 val t = times as GlobalRef[Array[Double](1)]{self.home==here};
42 t()(j) += now();
43 }
44 }
45

46

47 for (var i:Int=0; i<localSize; i++)
48 if (a(i) != b(i) + alpha∗c(i))
49 verified.set(false);
50 });
51

52 var min:Double = 1000000;

60 CHAPTER 5. BASIC MULTI-PLACE IDIOMS

53 for (var j:Int=1; j<NUM_TIMES; j++)
54 if (times()(j) < min)
55 min = times()(j);
56 printStats(N, min, verified());
57 }

Between lines 20 and 50 is the definition of the SPMD code that will execute at every
place. The main points of interest in this code are are:

Array allocation (lines 7): The three arrays are allocated using a constructor of the
Array class that allows the caller to provide the backing memory (the IndexedMemoryChunk)
that should be used to store the array’s data. This memory was itself allocated
using the allocateZeroed method of IndexedMemoryChunk with the value of the
third argument indicating whether or not the native memory should be allocated
using huge pages.

Vector computation (lines 37 – 38): These two lines are the inner loop that actually
performs the required vector operations.

Barrier (line 39): The barrier method of Team is used to synchronize the activities
running in each place after the computational kernel is completed. Teams will
be discussed in more detail in Section 6.1.3.

6 Optimizing Communication

6.1 Memory allocation and network hardware

6.1.1 Enabling RDMA and Asynchronous Copy

RDMA (Remote Direct Memory Access) hardware, such as InfiniBand, enables the
transfer of segments of memory from one machine to another without the involvement
of the CPU or operating system. This technology significantly reduces latency of data
transfers, and frees the CPU to do other work while the transfer is taking place. To
use RDMA hardware, the application needs to register the memory segments eligible
for transfer with the network hardware, and issue transfer requests as background tasks
with a completion handler to signal when the transfer is complete. In X10, the main
mechanism to do this is via the Array.asyncCopy() method, which performs these
operations for you, if RDMA hardware is available.

6.1.2 Customized Memory Allocation

The RDMA data transfers take place from a memory segment of one system to a seg-
ment at a (usually) remote system. When a data transfer is initiated, the caller needs to
know the address of the memory segments both locally and remotely. The local pointer
is easy, but the remote pointer must be determined. In a simple program, this usually
involves some form of pre-RDMA messaging to get the remote pointer to the initiator
of the RDMA call. There are many improvements that can be made on this. Within
X10, we use a congruent memory allocator, which allocates and registers a memory
buffer at the same address in every place (via mmap() or shmget()). This eliminates
the need for the remote-pointer transfer, any form of remote pointer lookup table, or
the need to calculate remote addresses at runtime.

6.1.3 Teams and other hardware optimizations

X10 teams offer capabilities similar to HPC collectives, such as Barrier, All-Reduce,
Broadcast, All-To-All, etc. Some networks support these well-known communication
patterns in hardware, and some simple calculations on the data is supported as well.

61

62 CHAPTER 6. OPTIMIZING COMMUNICATION

When the X10 runtime is configured for these systems, the X10 team operations will
map directly to the hardware implementations available, offering performance that can
not be matched with simple point-to-point messaging.

6.2 Random Access

6.2.1 Problem

The Random Access (RA) benchmark measures small updates to random memory loca-
tions within a giant table, by performing XOR operations on those locations. Because
the table is spread across many places, any update to a random location in that table is
likely to be an update to memory located at a remote place, not the local place. The
more places, the more likely this is. Performance is measured by how many GUPS
(Giga Updates Per Second) the system can sustain.

6.2.2 Solution Design

Our implementation takes advantage of the RDMA and customized memory allocation
described above, allocating memory buffers at the same location in all places, and
registering this with the RDMA hardware. We also make use of the calculation abilities
within the network hardware, to perform the XOR operations not on the CPU, but
instead in the network interface of the remote machine. These optimizations make
the Random Access benchmark run primarily on the network, leaving the CPU free to
spend its time generating the next random address to update.

6.2.3 Code

The code below shows how to allocate congruent memory that can later be used in
remote memory operations, via the IndexedMemoryChunk.allocateZeroed(,
, true) method call.

1 // create congruent array (same address at each place)

2 val plhimc = PlaceLocalHandle.makeFlat(PlaceGroup.WORLD,
3 () => new Box(IndexedMemoryChunk.allocateZeroed[Long](localTableSize, 8, true))
4 as Box[IndexedMemoryChunk[Long]]{self!=null});
5 PlaceGroup.WORLD.broadcastFlat(()=>{
6 for ([i] in 0..(localTableSize−1)) plhimc()()(i) = i as Long;
7 });

The code below shows the core computation.

1 static def runBenchmark(plhimc: PlaceLocalHandle[Box[IndexedMemoryChunk[Long]]
2 {self!=null}], logLocalTableSize: Int, numUpdates: Long) {
3 val mask = (1<<logLocalTableSize)−1;
4 val local_updates = numUpdates / Place.MAX_PLACES;

6.2. RANDOM ACCESS 63

5 val max = Place.MAX_PLACES;
6

7 PlaceGroup.WORLD.broadcastFlat(()=>{
8 val jj = Runtime.hereInt();
9 var ran:Long = HPCC_starts(jj∗(numUpdates/Place.MAX_PLACES));

10 val imc = plhimc()();
11 val size = logLocalTableSize;
12 val mask1 = mask;
13 val mask2 = Place.MAX_PLACES − 1;
14 val poly = POLY;
15 val lu = local_updates;
16 for (var k:Long=0 ; k<lu ; k+=1L) {
17 val place_id = ((ran>>size) as Int) & mask2;
18 val index = (ran as Int) & mask1;
19 val update = ran;
20 if (place_id==jj) {
21 imc(index) ˆ= update;
22 } else {
23 imc.getCongruentSibling(Place(place_id)).remoteXor(index, update);
24 }
25 ran = (ran << 1) ˆ (ran<0L ? poly : 0L);
26 }
27 });
28 }

The key line is 23. getCongruentSibling returns a RemoteIndexedMemoryChunk at the
given place. The remoteXor method call performs an asynchronous, atomic, remote
xor operation on this location, but in “uncounted” mode (see §4.3.3), i.e. as if with the
code:

On the PERCS machine, this kind of remote update is supported directly in hardware,
through reliable messaging. This method call is implemented natively, with a call to
the PAMI function that exposes this hardware functionality. Key to making this work is
the congruent array functionality. Note that the code above does not implement a local
update atomically, but it does use HFI hardware for remote updates, and the hardware
will perform those updates atomically. To perform the local updates atomically, the
HFI should be used for local updates as well.

Note that the timed portion of the code measures the cost of local updates and the cost
of issuing the remote atomic updates. It does not measure time to completion of these
issued updates. In principle, it is possible to examine some hardware counters and
measure how many updates completed successfully, from each place, and aggregate
these numbers to get an accurate count. The reference UPC code does not perform
such a measurement, and neither does the X10 code.

There is aother plausible way to check how many operations are completed. One starts
with a known configuration, times the run of two rounds of updates, and then runs a
third round of reads and counts how many cells have a value different from the value
in the known configuration. If no updates were lost, and all updates were completed,
the result would be zero. The UPC team (led by George Almasi) has performed these
tests on this hardware and obtained a very small number, significantly less than the 1%

64 CHAPTER 6. OPTIMIZING COMMUNICATION

permitted by the benchmark. Further, the time taken by the UPC code for two rounds
was almost precisely twice the time taken by the UPC code for one round.

Given that the UPC code and the X10 code perform exactly the same operation at the
hardware level – issue remote atomic update operations to the HFI – we believe that in
practice this is evidence that (almost) all operations are successfully completed within
the timed portion of the code. (Note that in principle it is possible that the second
update could happen after the termination of the second round of issuance, and before
the read in the third round. We do not believe this potential discrepency is significant.)

6.3 KMeans: Unsupervised clustering

6.3.1 Problem

K-Means Clustering is a common benchmark, which sorts a large number of data points
into clusters, by minimizing the sum of squares of distances between data and the cor-
responding cluster centroids. We use an iterative implementation, where the number
of points, clusters, dimensions, and iterations are provided at the start, and initial point
values and cluster means are chosen at random. In each iteration, all points will be
sorted into whichever cluster centroid is closest to that point’s value, the resulting clus-
ter centroid is recalculated, and this repeats.

6.3.2 Solution design

Our implementation spreads the points evenly across all X10 places, and each place
is responsible for assigning its set of points to clusters. To do this, every place needs
to know what the existing cluster mean values are at the beginning of an iteration,
and after assigning points to clusters, the new cluster means need to be calculated
from the new assignments made at every place. We use the AllReduce team operation
before and between each iteration of the algorithm to do this multi-place calculation of
the mean of each cluster. The AllReduce operation allows a simple calculation to be
made across values stored in many places, and the result is provided to all places. Our
implementation performs an ADD operation to count number of points in each cluster,
and an ADD to sum up the values of all points in each cluster.

6.3.3 Code

KMeans is written in SPMD-style, where every place executes the same sequence
of operations, on its own local set of data. The initialization phase, after reading in
command-line arguments, uses PlaceGroup.WORLD.broadcastFlat(()=>{..}) to
mark the point where computation changes from place 0 to all places. We initialize
data structures and random values for all of the points, and blindly assign them to clus-
ters. We also initialize Team.WORLD, which is a pre-defined team consisting of all X10

6.3. KMEANS: UNSUPERVISED CLUSTERING 65

places. Finally, we use the team.allreduce() operation to ADD the values of the
points that every place has put into the same cluster. The team.allreduce() also
acts as a barrier, ensuring that every place has reached this point in the algorithm, and
is ready to begin the iterations.

1 PlaceGroup.WORLD.broadcastFlat(()=>{
2 val role = Runtime.hereInt();
3 val random = new Random(role);
4 val host_points = new Rail[Float](num_slice_points∗dim,
5 (Int)=>random.next());
6

7 val host_clusters = new Rail[Float](num_clusters∗dim);
8 val host_cluster_counts = new Rail[Int](num_clusters);
9

10 val team = Team.WORLD;
11

12 if (role == 0) {
13 for (var k:Int=0; k<num_clusters; ++k) {
14 for (var d:Int=0; d<dim; ++d) {
15 host_clusters(k∗dim+d) = host_points(k+d∗num_slice_points);
16 }
17 }
18 }
19

20 val old_clusters = new Rail[Float](num_clusters∗dim);
21

22 var compute_time:Long = 0;
23 var comm_time:Long = 0;
24

25 team.allreduce(role, host_clusters, 0, host_clusters, 0, host_clusters.size,
26 Team.ADD);
27 // ...

28 });

Within each iteration, every place will compare the value of each point with the mean
of every cluster (calculated previously), and possibly re-assign a point from one cluster
to another. After this reshuffle is done locally at every place, each place enters a pair of
team.allreduce() calls, which re-calculates the sum of all point values per cluster,
and the number of points per cluster across all places. These values provide the new
means, and the iteration repeats until computation is complete.s

1 for (var iter:Int=0; iter<iterations; ++iter) {
2

3 Array.copy(host_clusters, old_clusters);
4 host_clusters.clear();
5 host_cluster_counts.clear();
6

7 val compute_start = System.nanoTime();
8 for (var p:Int=0; p<num_slice_points; p+=8) {
9 val closest = Vec.make[Int](8);

10 val closest_dist = Vec.make[Float](8);
11 for (var w:Int=0; w<8; ++w) closest(w) = −1;
12 for (var w:Int=0; w<8; ++w) closest_dist(w) = 1e37f;
13 for (var k:Int=0; k<num_clusters; ++k) {

66 CHAPTER 6. OPTIMIZING COMMUNICATION

14 val dist = Vec.make[Float](8);
15 for (var w:Int=0; w<8; ++w) dist(w) = 0.0f;
16 for (var d:Int=0; d<dim; ++d) {
17 val tmp = Vec.make[Float](8);
18 for (var w:Int=0; w<8; ++w) {
19 tmp(w) = host_points(p+w+d∗num_slice_points) − old_clusters(k∗dim+d);
20 }
21 for (var w:Int=0; w<8; ++w) {
22 dist(w) = dist(w) + tmp(w) ∗ tmp(w);
23 }
24 }
25 for (var w:Int=0; w<8; ++w) {
26 if (dist(w) < closest_dist(w)) {
27 closest_dist(w) = dist(w);
28 closest(w) = k;
29 }
30 }
31 }
32 for (var d:Int=0; d<dim; ++d) {
33 for (var w:Int=0; w<8; ++w) {
34 val index = closest(w)∗dim+d;
35 host_clusters(index) += host_points(p+w+d∗num_slice_points);
36 }
37 }
38 for (var w:Int=0; w<8; ++w) ++host_cluster_counts(closest(w));
39 }
40 compute_time += System.nanoTime() − compute_start;
41

42 val comm_start = System.nanoTime();
43 team.allreduce(role, host_clusters, 0, host_clusters, 0, host_clusters.size,
44 Team.ADD);
45 team.allreduce(role, host_cluster_counts, 0, host_cluster_counts, 0,
46 host_cluster_counts.size, Team.ADD);
47 comm_time += System.nanoTime() − comm_start;
48

49 for (var k:Int=0; k<num_clusters; ++k) {
50 for (var d:Int=0; d<dim; ++d) host_clusters(k∗dim+d) /= host_cluster_counts(k);
51 }
52

53 if (role == 0) {
54 Console.OUT.println("Iteration: " + iter);
55 if (verbose) printClusters(host_clusters, dim);
56 }
57 }

6.4 Fourier Transform

6.4.1 Problem

We implement the Fast Fourier Transform algorithm, which transforms time-based data
into frequency-based data. For example, the conversion of a measured sound wave into
the set of individual frequencies that make up that sound wave.

6.4. FOURIER TRANSFORM 67

6.4.2 Solution design

Our implementation uses a 2D parallel algorithm, where the data is stored in a 2D
array, with each place handling a single row of the array. Each place performs FFT
calculations on its local row, then transposes the row into a form suitable for an All-
To-All team operation, to swap results with other places. After the All-To-All, the data
is transposed back into the form necessary for FFT, and more calculations are made on
the local row. This pattern is repeated until all of the steps of FFT are completed.

The 2D array allows us to make use of parallelism, but it also means that a large amount
of data needs to be exchanged after each phase. So we pay particular attention to opti-
mizing the movement of that data, both by using an All-To-All team operation, and by
optimizing for RDMA within the All-To-All. Using the All-To-All is straightforward
– it means that we organize the data in the buffers into the form required by the All-
To-All operation. But to optimize for RDMA, we need to make use of the congruent
memory allocator described in the RA program above. As a reminder, the congruent
memory allocator allocates memory buffers at the same location in all places, so that
memory addresses do not need to be exchanged, and it registers those memory loca-
tions with the RDMA hardware. Depending on the system, an All-To-All operation
may benefit from an initial warm-up operation, to initialize any data structures or other
components of the network before the main calculation. So we include a warmup in
our program as well.

6.4.3 Code

Initialization is straightforward, using the makeFlat() and broadcastFlat() idioms
to initialize each place, and start a SPMD-style execution via the FT.run() method.

1 val plh = PlaceLocalHandle.makeFlat[FT](PlaceGroup.WORLD, ()=>new FT(nRows,
2 localSize, N, SQRTN, verify));
3

4 PlaceGroup.WORLD.broadcastFlat(()=>{plh().run();});

Memory allocation uses our congruent memory allocator via the last true argument to
IndexedMemoryChunk.allocateZeroed(), which allocates the A array at the same
memory location in every place. Same for the B array. Internally, this also registers the
arrays with the RDMA hardware, so that their contents can be transmitted via RDMA.

1 A = new Rail[Double](IndexedMemoryChunk.allocateZeroed[Double](localSize,
2 8, true));
3 B = new Rail[Double](IndexedMemoryChunk.allocateZeroed[Double](localSize,
4 8, true));

The FT.alltoall() method uses the Team.WORLD.alltoall() team with those A
and B arrays, swapping them after the call.

68 CHAPTER 6. OPTIMIZING COMMUNICATION

1 def alltoall() {
2 Team.WORLD.alltoall(I, B, 0, A, 0, 2 ∗ nRows ∗ nRows);
3 val C = B;
4 B = A;
5 A = C;
6 }

6.5 LU Decomposition

6.5.1 Problem

LU stands for Lower-Upper, and this benchmark is also called High Performance Lin-
pack (HPL). The implementation is a LU factorization of a large square matrix, which
is broken into tiles across X10 places. It uses alternating phases of local matrix mul-
tiplication with All-To-All communications to distribute changes at the tile-edges that
cross place boundries.

6.5.2 Solution design

LU is primarily a CPU-bound benchmark, where the matrix multiplication calcula-
tion dominates, and network communication time is secondary. Our implementation
makes use of IBM’s ESSL library, which is similar to the more familiar BLAS libraries,
which enables maximum CPU performance with well-known math patterns. The ESSL
library is provided as a C-style header and library, which gets linked into the X10 bi-
nary through @NativeCPPExtern method annotations, and the use of X10 primitives
that map directly onto C-style primitives.

For network communications, LU differs from the above benchmarks in that it uses
many parallel X10 teams made up of a subset of places, one team per row and column
of the overall matrix, instead of a world team. So each place, handling a single tile, is
a member of two teams. The communication pattern has phases of calculation, parallel
row swaps (with all row teams communicating at the same time), and parallel col-
umn swaps. This benchmark shows examples of several new Team operations worth
highlighting, as well as optimizations such as the congruent memory allocation and
RDMA-enabled Array.asyncCopy() which have already been covered in previous
benchmarks.

6.5.3 Code

Our benchmark starts out demonstrating the import and wrapping of the ESSL li-
brary, through the @NativeCPP family of annotations. We also show the use of the
blockTriSolve further down in the program.

6.5. LU DECOMPOSITION 69

1 @NativeCPPInclude("essl_natives.h")
2 @NativeCPPCompilationUnit("essl_natives.cc")
3 class LU {
4

5 @NativeCPPExtern

6 native static def blockTriSolve(me:Rail[Double],
7 diag:Rail[Double], B:Int):void;
8

9 @NativeCPPExtern

10 native static def blockTriSolveDiag(diag:Rail[Double],
11 min:Int, max:Int, B:Int):void;
12 // ...

13

14 def triSolve(J:Int, timer:Timer) {
15 if (A_here.hasRow(J)) {
16 var tmp:Rail[Double];
17 if (A_here.hasCol(J)) tmp = A_here.block(J, J).raw;
18 else tmp = colBuffer;
19 val diag = tmp;
20 timer.start(10);
21 row.bcast(rowRole, J%py, diag, 0, diag, 0, diag.size);
22 timer.stop(10);
23 for (var cj:Int = J + 1; cj <= NB; ++cj) {
24 if (A_here.hasCol(cj)) {
25 blockTriSolve(A_here.block(J, cj).raw, diag, B);
26 }
27 }
28 }
29 }
30 // ...

31 }

We create our large matrix as a set of tiles allocated via the congruent memory allocator
at each place, named buffers. The constructor, which is invoked in every place as a
part of the PlaceLocalHandle.makeFlat() call, shows the creation of the local X10
teams named col and row. These teams are created via splitting the WORLD team into
segments.

1 public static def main(args:Rail[String]) {
2 if (args.size < 4) {
3 Console.OUT.println("Usage: LU M B px py bk");
4 Console.OUT.println("M = Matrix size,");
5 Console.OUT.println("B = Block size, where B should perfectly divide M");
6 Console.OUT.println("px py = Processor grid, where px*py = nplaces");
7 Console.OUT.println("bk = block size for panel, where bk should divide B");
8 return;
9 }

10 // ...

11 val A = BlockedArray.make(M, N, B, B, px, py);
12 val buffers = PlaceLocalHandle.makeFlat[Rail[Double]{self!=null}]
13 (Dist.makeUnique(), ()=>new Rail[Double]
14 (IndexedMemoryChunk.allocateZeroed[Double](N,
15 8, IndexedMemoryChunk.hugePages())));
16 val lus = PlaceLocalHandle.makeFlat[LU](Dist.makeUnique(),
17 ()=>new LU(M, N, B, px, py, bk, A, buffers));

70 CHAPTER 6. OPTIMIZING COMMUNICATION

18 Console.OUT.println ("LU: M " + M + " B " + B + " px " + px + " py " + py);
19 start(lus);
20 }
21

22 def this(M:Int, N:Int, B:Int, px:Int, py:Int, bk:Int,
23 A:PlaceLocalHandle[BlockedArray],
24 buffers:PlaceLocalHandle[Rail[Double]{self!=null}]) {
25 this.M = M; this.N = N; this.B = B; this.px = px; this.py = py; this.bk = bk;
26 this.A = A; A_here = A();
27 this.buffers = buffers; buffer = buffers();
28 remoteBuffer = new RemoteArray(buffer);
29 MB = M / B − 1;
30 NB = N / B − 1;
31 colRole = here.id % px;
32 rowRole = here.id / px;
33 col = Team.WORLD.split(here.id, rowRole, colRole);
34 row = Team.WORLD.split(here.id, colRole, rowRole);
35 pivot = new Rail[Int](B);
36 rowForBroadcast = new Rail[Double](B);
37 val rowBuffers = new Rail[Rail[Double]{self!=null}](M / B / px + 1,
38 (Int)=>new Rail[Double](IndexedMemoryChunk.allocateZeroed[Double](B∗B,
39 8, IndexedMemoryChunk.hugePages())));
40 val colBuffers = new Rail[Rail[Double]{self!=null}](N / B / py + 1,
41 (Int)=>new Rail[Double](IndexedMemoryChunk.allocateZeroed[Double](B∗B,
42 8, IndexedMemoryChunk.hugePages())));
43 this.rowBuffers = rowBuffers;
44 this.colBuffers = colBuffers;
45 rowBuffer = rowBuffers(0);
46 remoteRowBuffer = new RemoteArray(rowBuffer);
47 colBuffer = colBuffers(0);
48 }

7 Unbalanced computations

Hitherto we have considered problems that can be partitioned statically across multiple
places.

We shall now consider a class of problems for which such a static partitioning is not
feasible. Many problems can be cast in the form of a state-space search. Examples can
be found in many areas – such as game-playing, planning, problem-solving, puzzle-
solving etc.

Consider for example the N-Queens problem discussed earlier. We can conceptualize
it as a certain kind of a search process. The state of the search can be summarized in a
data-structure called a configuration. In the case of N-Queens a configuration is simply
the current state of the chess board. This can be summarized by the current placement
of queens – a sequence of at most N integers, the ith integer representing the column
in which the ith queen is placed. A configuration can be classified as good or bad.
A good configuration satisfies all the application-specific invariants, a bad one does
not. In the case of N-Queens each configuration must be such that no two assigned
queens should be on the same column or left or right diagonal. If a configuration is
good, it may generate zero or more additional configurations. For N-queens, if the
configuration already represents N queens placed on a board then the configuration is
considered final, i.e. generates zero additional configurations. Otherwise it generates
as many new configurations as the number of squares on which queens can be placed
in the next row without violating the stated constraints.

The overall task of a state-space search problem is to calculate some metric over the
set of all good configurations – e.g. the number of such configurations, the “best”
configuration etc.

Practical applications typically have a few additional complications. Sometimes the
configuration generated from a good configuration may already have been discovered,
i.e. the space of configurations is a graph and not a tree. Hence it is necessary to deter-
mine whether the newly generated configuration has already been encountered or not.
Sometimes – as in the case of state-space searches performed during game play, such
as chess – one is looking for the “best” next move, not necessarily all possible moves.
So some form of min/max search technique may be used to prune good configurations
that are not as good as other configurations currently being considered.

Regardless of these complications, state-space search problems typically satisfy a few
properties:

71

72 CHAPTER 7. UNBALANCED COMPUTATIONS

• Each configuration can be compactly represented (say in a few kilo-bytes or
less).

• Usually, some non-trivial amount of computation is necessary to determine the
next configurations from a good configuration.

• The number of configurations generated from a good configuration may be very
difficult to predict statically.

The challenge at hand, therefore, is to parallelize the computation across a potentially
very large number of places while achieving high parallel efficiency. The computation
is typically initiated at a single place (usually place 0) with the root configuration. A
good solution must look to quickly divide up the work across all available places. It
must ensure that once a place runs out of work it is able to quickly find work, if in fact
work exists at any place in the system. That is, a good solution must solve the global
load-balancing problem.

The material in this chapter is excerpted from [28].

7.1 Unbalanced Tree Search

In this section we shall focus on a particular problem, the Unbalanced Tree Search
(UTS) problem that was designed specifically as a benchmark for global load balancing
[22, 6]. The details in the next section are taken from these references.

7.1.1 Problem

The problem is to find the number of nodes in a unbalanced tree. Given is the state of
the root node in the tree and various parameters that control the behavior of the tree
generation process. Two kinds of trees are specified binomial trees and geometric trees
as follows:

A node in a binomial tree has m children with probability q and has no
children with probability 1 − 1, where m and q are parameters . . . When
qm < 1, this process generates a finite tree with expected size 1/(1−qm).
Since all nodes follow the same distribution, the trees generated are self-
similar and the distribution of tree sizes and depths follow a power law
. . . The variation of subtree sizes increases dramatically as qm approaches
1. This is the source of the tree’s imbalance. A binomial tree is an optimal
adversary for load balancing strategies, since there is no advantage to be
gained by choosing to move one node over another for load balance: the
expected work at all nodes is identical.

On the other hand geometric trees have somewhat more regular structure. Their depth
is bounded by a parameter d.

7.1. UNBALANCED TREE SEARCH 73

The nodes in a geometric tree have a branching factor that follows
a geometric distribution with an expected value that is specified by the
parameter b0 > 1. The parameter d specifies its maximum depth cut-off,
beyond which the tree is not allowed to grow . . . The expected size of these
trees is (b0)

d, but since the geometric distribution has a long tail, some
nodes will have significantly more than b0 children, yielding unbalanced
trees . . . the expected size of the subtree rooted at a node increases with
proximity to the root.

7.1.2 Solution Design

The central problem to be solved is load balancing.

One common way to load balance is to use work-stealing. For shared memory system
this technique has been pioneered in the Cilk system. Each worker maintains a double
ended queue (deque) of tasks. When a worker encounters a new task, it pushes its
continuation onto the bottom of the deque, and descends into the task. On completion
of the task, it checks to see if its deque has any work, if so it pops a task (from the
bottom) and continues with the work. Else (its deque is empty) it looks for work on
other workers’ deques. It randomly determines a victim worker, checks if its queue is
non-empty, and if so, pops a task from the top of the dequeue (the end other than the
one being operated on by the owner of the dequeue). If the queue is empty, it guesses
again and continues until it finds work. Work-stealing systems are optimized for the
case in which the number of steals is much smaller than the total amount of work. This
is called the “work first” principle – the work of performing a steal is incurred by the
thief (which has no work), and not the victim (which is busy performing its work).

Distributed work-stealing must deal with some additional complications. First, the cost
of stealing is usually significantly higher than in the shared memory case. For many
systems, the target CPU must be involved in processing a steal attempt. Additionally,
one must solve the distributed termination detection problem. The system must detect
when all workers have finished their work, and there is no more work. At this point all
workers should be shut down, and the computation should terminate.

X10 already offers a mechanism for distributed termination detection – finish. Thus,
in principle it should be possible to spawn an activity at each place, and let each look
for work. To trigger finish based termination detection however, these workers must
eventually terminate. But when? One simple idea is that a worker should terminate
after k steal attempts have failed. However this leaves open the possibility that a worker
may terminate too early – just because it happened to be unlucky in its first k guesses.
If there is work somewhere else in the network then this work can no longer be shared
with these terminated workers, thereby affecting parallel efficiency. (In an extreme
case this could lead to sequentializing significant portion of the work.)

Therefore there must be a way by which a new activity can be launched at a place
whose worker has already terminated. This leads to the idea of a lifeline graph. For
each place p we pre-determine a set of other places, called buddies. Once the worker

74 CHAPTER 7. UNBALANCED COMPUTATIONS

at p has performed k successive (unsuccessful) steals, it examines its buddies in turn.
At each buddy it determines whether there is some work, and if so, steals a portion.
However, if there is no work, it records at the buddy that p is waiting for work. If p
cannot find any work after it has examined all its buddies, it dies – the place p now
becomes quiescent.

But if P went to a buddy B, and B did not have any work, then it must itself be out
looking for work – hence it is possible that it will soon acquire work. In this case
we require that B distribute a portion of the work to those workers that attempted to
buddy steal from it but failed. Work must be spawned on its own async – using the
at(p) async S idiom. If P had no activity left, it now will have a fresh activity.
Thus, unlike pure work-stealing based systems, a system with lifeline graphs will see
its nodes moving from a state of processing work (the active state), to a state in which
they are stealing to a state in which they are dead, to a state (optionally) in which they
are woken up again with more work (and are hence back in the active state).

Note that when there is no work in the system, all places will be dead, there will be no
active async in the system and hence the top-level finish can terminate.

The only question left is to determine the assignment of buddies to a place. We are
looking for a directed graph that is fully connected (so work can flow from any vertex
to any other vertex) and that has a low diameter (so latency for work distribution is
low) and has a low degree (so the number of buddies potentially sendng work to a
dead vertex is low). z-dimensional hyper-cubes satisfy these properties and have been
implemented.

7.1.3 Code

Utilities The UTS code uses several fixed size stacks (a simple abstraction over
IndexedMemoryChunk, IMC), and a queue also built over IMCs.

APlaceLocalHandle is created with a UTS object at each place. This carries the state
needed for a worker to execute UTS code, namely the fields:

1 val queue:Queue;
2 val lifelineThieves:FixedSizeStack[Int];
3 val thieves:FixedSizeStack[Int];
4 val lifelines:Rail[Int];
5 val lifelinesActivated:Rail[Boolean];
6

7 val n:Int;
8 val w:Int;
9 val m:Int;

10

11 val random = new Random();
12 val victims:Rail[Int];
13 val logger:Logger;
14

15 @x10.compiler.Volatile transient var active:Boolean = false;
16 @x10.compiler.Volatile transient var empty:Boolean;
17 @x10.compiler.Volatile transient var waiting:Boolean;

7.1. UNBALANCED TREE SEARCH 75

At every place h, lifelineThieves is pre-populated as if lifeline visits had already
been made by the places 3*h+i for i in 1..3. This permits the work from place 0 to
be rapidly disseminated to all places in an initial wave of outdegree 3 (therefore taking
log3(P) to get to all places).

The main entry point for the timed portion of the program is:
1 def main(st:PlaceLocalHandle[UTS], seed:Int) {
2 @Pragma(Pragma.FINISH_DENSE) finish {
3 try {
4 active = true;
5 logger.startLive();
6 queue.init(seed);
7 processStack(st);
8 logger.stopLive();
9 active = false;

10 logger.nodesCount = queue.count;
11 } catch (v:Throwable) {
12 error(v);
13 }
14 }
15 }

It starts the computation within a finish and initializes work at place 0 – this imme-
diately triggers the first propagation wave that distributes work over the entire graph,
as discussed above. The heart of the work is done by processStack:

1 @Inline final def processAtMostN() {
2 var i:Int=0;
3 for (; (i<n) && (queue.size>0); ++i) {
4 queue.expand();
5 }
6 queue.count += i;
7 return queue.size > 0;
8 }
9

10 @Inline static def min(i:Int,j:Int) = i < j ? i : j;
11

12 final def processStack(st:PlaceLocalHandle[UTS]) {
13 do {
14 while (processAtMostN()) {
15 Runtime.probe();
16 distribute(st);
17 }
18 reject(st);
19 } while (steal(st));
20 }

This expands upto n nodes (taken from the nodes stored in queue), then calls probe()
to check for (and process) incoming events, and then checks to see if work needs to
be distributed. If no more work is left (as determined by termination of the while
loop), any visiting thieves are told there is no more work, and the activity starts steal
processing.

76 CHAPTER 7. UNBALANCED COMPUTATIONS

Let us discuss the steal path first.

1 def steal(st:PlaceLocalHandle[UTS]) {
2 if (P == 1) return false;
3 val p = Runtime.hereInt();
4 empty = true;
5 for (var i:Int=0; i < w && empty; ++i) {
6 ++logger.stealsAttempted;
7 waiting = true;
8 logger.stopLive();
9 at (Place(victims(random.nextInt(m)))) @Uncounted async st().request(st, p, false);

10 while (waiting) Runtime.probe();
11 logger.startLive();
12 }
13 for (var i:Int=0; (i<lifelines.size) && empty && (0<=lifelines(i)); ++i) {
14 val lifeline = lifelines(i);
15 if (!lifelinesActivated(lifeline)) {
16 ++logger.lifelineStealsAttempted;
17 lifelinesActivated(lifeline) = true;
18 waiting = true;
19 logger.stopLive();
20 at (Place(lifeline)) @Uncounted async st().request(st, p, true);
21 while (waiting) Runtime.probe();
22 logger.startLive();
23 }
24 }
25 return !empty;
26 }

Up to w attempts are made (in sequence) to steal from other places. A steal is exe-
cuted by sending a message (through an at) statement. The message can be marked as
Uncounted because the only async it triggers will be one coming back with a reply,
and the current activity will remain alive until this reply is processed. After sending the
message, the activity unters a probe loop waiting for a response. The response (see
reject processing below) will set waiting to false, releasing the activity from this
loop.

If no work is received from these random steals, the activity visits the lifelines in se-
quence. The logic here is exactly the same as with random stealing, except that the
activation of each lifeline is marked locally (so that at most one request is outstanding
on the lifeline), and the target is told this is a lifeline steal.

If any work is found as a result of these attempts, the activity returns to processStack
and continues processing. Otherwise the activity terminates. Since the life-lines have
been set up, it is now up to others to activate work at this place, through a distribution.

Let us now discuss the distribution path. This is relatively simple. The current work
is divided up amongst the activated lifelines and active thieves. Note that a normal
theft can be responded to with an uncounted async (because the thief already has an
activity running), but on Line linenumber the async must be uncounted because it is
not known whether the place being woken up already has an activity running or not.

1 @Inline def give(st:PlaceLocalHandle[UTS], loot:Queue.Fragment) {

7.1. UNBALANCED TREE SEARCH 77

2 val victim = Runtime.hereInt();
3 logger.nodesGiven += loot.hash.length();
4 if (thieves.size() > 0) {
5 val thief = thieves.pop();
6 if (thief >= 0) {
7 ++logger.lifelineStealsSuffered;
8 at (Place(thief)) @Uncounted async { st().deal(st, loot, victim); st().waiting = false; }
9 } else {

10 ++logger.stealsSuffered;
11 at (Place(−thief−1)) @Uncounted async { st().deal(st, loot, −1); st().waiting = false; }
12 }
13 } else {
14 ++logger.lifelineStealsSuffered;
15 val thief = lifelineThieves.pop();
16 at (Place(thief)) async st().deal(st, loot, victim);
17 }
18 }
19 @Inline def distribute(st:PlaceLocalHandle[UTS]) {
20 var loot:Queue.Fragment;
21 while ((lifelineThieves.size() + thieves.size() > 0) && (loot = queue.grab()) != null) {
22 give(st, loot);
23 }
24 reject(st);
25 }

The code for dealing is:

1 def deal(st:PlaceLocalHandle[UTS], loot:Queue.Fragment, source:Int) {
2 try {
3 val lifeline = source >= 0;
4 if (lifeline) lifelinesActivated(source) = false;
5 if (active) {
6 empty = false;
7 processLoot(loot, lifeline);
8 } else {
9 active = true;

10 logger.startLive();
11 processLoot(loot, lifeline);
12

13 processStack(st);
14 logger.stopLive();
15 active = false;
16 logger.nodesCount = queue.count;
17 }
18 } catch (v:Throwable) {
19 error(v);
20 }
21 }

78 CHAPTER 7. UNBALANCED COMPUTATIONS

Part III

Conclusion and Appendices

79

8 Conclusion

This book presents a brief overview of the X10 language, and shows how to express
various concurrency idioms in such a way that the code can scale to tens of thousands
of places.

This book does not illustrate the use of multiple asyncs in a given place, and hence the
properties of work-stealing or “finish/join” scheduler.

Also it has focused on the Native runtime and does not discuss interoperability with
Java, an important concept.

We leave these discussions for future work.

81

82 CHAPTER 8. CONCLUSION

References

[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. Efficient
implementation of Java interfaces: Invokeinterface considered harmless. ACM
SIGPLAN Notices, 36(11):108–124, November 2001. In Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).

[2] Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali, V. Krishna Nandivada,
Igor Peshansky, Vijay A. Saraswat, Sayantan Sur, Pradeep Varma, and Tong Wen.
Efficient, portable implementation of asynchronous multi-place programs. In Pro-
ceedings of the 14th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP ’09, pages 271–282, New York, NY, USA, 2009.
ACM.

[3] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46:720–748, September 1999.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:
an object-oriented approach to non-uniform cluster computing. SIGPLAN Not.,
40(10):519–538, October 2005.

[5] C. Danis and C. Halverson. The value derived from the observational component
in an integrated methodology for the study of HPC programmer productivity. In
Proceedings of the Third Workshop on Productivity and Performance in High-End
Computing, HPCA ’06, pages 11–21, 2006.

[6] James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P Sadayappan, and Chau-
Wen Tseng. Dynamic Load Balancing of Unbalanced Computations Using Mes-
sage Passing. In IPDPS 07: Parallel and Distributed Processing Symposium,
pages 1–8, Long Beach, CA, March 2007. IEEE International.

[7] Jack Dongarra, Robert Graybill, William Harrod, Robert Lucas, Ewing Lusk, Pi-
otr Luszczek, Janice Mcmahon, Allan Snavely, Jeffrey Vetter, Katherine Yelick,
Sadaf Alam, Roy Campbell, Laura Carrington, Tzu-Yi Chen, Omid Khalili,
Jeremy Meredith, and Mustafa Tikir. DARPA’s HPCS program: History, mod-
els, tools, languages. In Marvin V. Zelkowitz, editor, Advances in COMPUTERS
High Performance Computing, volume 72 of Advances in Computers, pages 1 –
100. Elsevier, 2008.

83

84 REFERENCES

[8] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, and J. Urbanic. An Experiment in Measur-
ing the Productivity of Three Parallel Programming Languages. In Proceedings
of the Third Workshop on Productivity and Performance in High-End Computing,
HPCA ’06, pages 30–36, 2006.

[9] T. El-Ghazawi, B. Carlson, and J. Draper. Upc Language Specifications v1.1,
2003.

[10] John Richards et al. IBM PERCS productivity assessment report 4, 2012. Internal
IBM memo.

[11] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa-
tion of the cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN
1998 conference on Programming language design and implementation, PLDI
’98, pages 212–223, New York, NY, USA, 1998. ACM.

[12] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. Systemml: Declarative machine learning on mapreduce. In Pro-
ceedings of the 2011 IEEE 27th International Conference on Data Engineering,
ICDE ’11, pages 231–242, Washington, DC, USA, 2011. IEEE Computer Soci-
ety.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Pro-
fessional, 2005.

[14] David Grove, Olivier Tardieu, David Cunningham, Ben Herta, Igor Peshansky,
and Vijay Saraswat. A performance model for X10 applications: what’s going on
under the hood? In Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10
’11, pages 1:1–1:8, New York, NY, USA, 2011. ACM.

[15] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and
help-first scheduling policies for async-finish task parallelism. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed Processing,
pages 1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[16] C. Halverson and C. Danis. Towards an Ecologically Valid Study of Programmer
Behavior for Scientific Computing. In Proceedings of the First Workshop on
Software Engineering for Computational Science and Engineering, ICSE ’08,
2008.

[17] Kiyokuni Kawachiya, Mikio Takeuchi, Salikh Zakirov, and Tamiya Onodera.
Distributed garbage collection for managed X10. In Proceedings of the 2012
ACM SIGPLAN X10 Workshop, X10 ’12, pages 5:1–5:11, New York, NY, USA,
2012. ACM.

[18] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 con-
ference on Java Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000.
ACM.

REFERENCES 85

[19] MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2. http:
//www.mpi-forum.org, September 4th 2009.

[20] Rajesh Nishtala, Paul H. Hargrove, Dan O. Bonachea, and Katherine A. Yelick.
Scaling communication-intensive applications on BlueGene/P using one-sided
communication and overlap. In Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, IPDPS ’09, pages 1–12, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[21] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: an
extensible compiler framework for Java. In Proceedings of the 12th international
conference on Compiler construction, CC’03, pages 138–152, Berlin, Heidelberg,
2003. Springer-Verlag.

[22] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan, and
Chau-Wen Tseng. UTS: an unbalanced tree search benchmark. In Proceedings
of the 19th international conference on Languages and compilers for parallel
computing, LCPC’06, pages 235–250, Berlin, Heidelberg, 2007. Springer-Verlag.

[23] Jens Palsberg, editor. X10 ’12: Proceedings of the 2012 ACM SIGPLAN X10
Workshop, New York, NY, USA, 2012. ACM.

[24] Vijay Saraswat, editor. X10 ’11: Proceedings of the 2011 ACM SIGPLAN X10
Workshop, New York, NY, USA, 2011. ACM.

[25] Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David Cun-
ningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu.
The asynchronous partitioned global address space model. Technical report,
Computer Science Department, U Rochester, Toronto, Canada, June 2010.

[26] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David
Grove. X10 language specification. http://x10.sourceforge.net/

documentation/languagespec/x10-223.pdf.

[27] Vijay Saraswat and Radha Jagadeesan. Concurrent clustered programming. In
CONCUR 2005 - Concurrency Theory, pages 353–367, London, UK, 2005.
Springer-Verlag.

[28] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and
Sriram Krishnamoorthy. Lifeline-based global load balancing. In Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 201–212, New York, NY, USA, 2011. ACM.

[29] A. Shinnar, D. Cunningham, B. Herta, and V. Saraswat. M3R: Increased perfor-
mance for in-memory Hadoop jobs. In Proceedings of VLDB Conference, VLDB
’12, 2012.

[30] A. Skjellum, E. Lusk, and W. Gropp. Using MPI: Portable Parallel Programming
with the Message Passing Iinterface. MIT Press, 1999.

http://www.mpi-forum.org
http://www.mpi-forum.org
http://x10.sourceforge.net/documentation/languagespec/x10-223.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-223.pdf

86 REFERENCES

[31] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge,
MA, USA, 2nd. (revised) edition, 1998.

[32] Mikio Takeuchi, Yuki Makino, Kiyokuni Kawachiya, Hiroshi Horii, Toyotaro
Suzumura, Toshio Suganuma, and Tamiya Onodera. Compiling X10 to Java. In
Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 3:1–
3:10, New York, NY, USA, 2011. ACM.

[33] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2009.

[34] Wikipedia. HPC Challenge Awards: 2007 Awards – Most Productive Research
Implementation: X10, 2007.

[35] Wikipedia. Percs, 2011.

[36] Wikipedia. C# (programming language), 2012.

[37] Wikipedia. Eclipse (software), 2012.

[38] Wikipedia. Pig (programming tool), 2012.

[39] Wikipedia. Publications using X10, 2012.

[40] Wikipedia. Universities using X10, 2012.

[41] X10 2.2.3 release on SourceForge. http://sourceforge.net/projects/
x10/files/x10/2.2.3/.

[42] X10 PERCS benchmarks version 2.2.3. http://sourceforge.net/

projects/x10/files/x10/2.2.3/x10-benchmarks-2.2.3.tar.bz2.

[43] X10RT API specification. http://x10.sourceforge.net/x10rt/.

[44] X10RT implementations. http://x10-lang.org/documentation/

practical-x10-programming/x10rt-implementations.html.

[45] X10 website. http://x10-lang.org.

http://sourceforge.net/projects/x10/files/x10/2.2.3/
http://sourceforge.net/projects/x10/files/x10/2.2.3/
http://sourceforge.net/projects/x10/files/x10/2.2.3/x10-benchmarks-2.2.3.tar.bz2
http://sourceforge.net/projects/x10/files/x10/2.2.3/x10-benchmarks-2.2.3.tar.bz2
http://x10.sourceforge.net/x10rt/
http://x10-lang.org/documentation/practical-x10-programming/x10rt-implementations.html
http://x10-lang.org/documentation/practical-x10-programming/x10rt-implementations.html
http://x10-lang.org

A Building X10

The X10 runtime has several build-time configuration options, which enable specific
communications protocols, and reduce error checking within the X10 libraries at run-
time for better performance. There is a similar set of options available when compiling
your own program with the x10c++ compiler. When and how to use these is detailed
here.

A.1 Network transport implementations

For communications, the X10 runtime has the following transport implementations:

• Sockets: Uses TCP/IP sockets to support multiple places on one or more hosts.
This is the default implementation, and is the only option when using managed
X10. The sockets transport uses SSH to launch the binaries across the network.
If you have a simple cluster of machines that support Ethernet and SSH, the
sockets transport is a good choice.

• Standalone: Supports multiple places on a single host, using shared memory
between places. Standalone has high bandwidth, but limited message sizes and
only supports places running on a single machine.

• MPI: An implementation of X10RT on top of MPI-2. This supports all the hard-
ware that your MPI implementation supports, such as Infiniband and Ethernet,
and should be used for systems where MPI is preferred. It does not (currently)
use MPI’s collective implementations, but instead uses our own collective im-
plementations.

• PAMI: An IBM communications API that comes with the IBM Parallel Envi-
ronment: http://www-03.ibm.com/systems/software/parallel/index.html. PAMI
supports high-end networks such HFI (Host Fabric Interface), BlueGene, In-
finiband, shared memory, and also Ethernet. The PAMI implementation uses
PAMI’s collectives, and is X10’s best-performing transport. If your system has
the IBM Parallel Environment installed, you’ll want to use PAMI.

87

88 APPENDIX A. BUILDING X10

The X10 runtime will always be built with Sockets and Standalone transports, as no
special libraries need to be available on the system to compile them. But if you wish
to make use of MPI or PAMI in your program, you must build the X10 runtime from
source, specifying that you want to build in support for one or both of these transports.
Similarly, when building your own program, you can choose which transport to use
and other options via arguments to x10c++.

A.2 Building the X10 runtime

The X10 runtime is built using ant (http://ant.apache.org/). When you are satisfied that
your program is operating correctly, for best performance in your programs, build the
X10 runtime with the optimize and NO CHECKS options turned on. These will reduce
the error checking within the X10 library classes at runtime. If you want to enable sup-
port for PAMI or MPI transports, turn on the X10RT PAMI and/or X10RT MPI options.
For example: “ant -DX10RT PAMI=true -Doptimize=true -DNO CHECKS=true
dist”

A.3 Building your program

You use the x10c++ compiler for building your own programs. The X10 compiler
takes arguments to enable runtime optimizations, reduced error checking, and trans-
port selection of your program source, at build-time. Use the -O, -NO CHECKS, and
-STATIC CHECKS flags for the fastest performance, after you are satisfied with the cor-
rectness of your program. To choose a network transport other than sockets, specify
pami, mpi, or standalone as the value of the -x10rt flag. For example: “x10c++
-O -NO CHECKS -STATIC CHECKS -x10rt pami YourProgram.x10”.

B Running X10

The output of the x10c++ compiler is a standard binary executable program. Depending
on which network transport chosen, different launchers and libraries will have been
linked in.

Details on how to launch your program, and which environment variables control
where the X10 places execute in a multi-host environment differs slightly between
transports, but in general the binary can simply be executed.

Here we provide more details on the environment variables which control X10 compila-
tion and execution, in general. We also provide information about specific environment
variables for the PAMI transport, for a system using the IBM Parallel Environment.
Full details can be found on the X10 website [45].

B.1 X10 Variables

The environment variables of interest are:

X10 NTHREADS=1: Specify the number of worker threads used in each place to run the
application code. Default to 1. Set to the number of cores available per place.
For instance, when running 8 places on a 32-core host, set to 4.

X10 STATIC THREADS=true: Specify that the runtime should not create threads dy-
namically. Default to false, that is, permit dynamic thread creation. Set to true
for a small performance boost for SPMD-style code with single-threaded places.

X10RT CPUMAP=cpumap: Specify a file describing the mapping from places to cores.
Optional. Default to none. Override the MP TASK AFFINITY setting if set. Like
the host file, the cpumap file contains one line per X10 place. Line n specifies
the core id for place n.

B.1.1 Congruent Memory Allocator

The X10 runtime provides a congruent memory allocator. It permits allocating memory
at the same address in every place, registers this memory with PAMI, and optionally
uses large pages thus enabling fast data access and transfer.

89

90 APPENDIX B. RUNNING X10

If used, the congruent memory allocator must be configured using the following envi-
ronment variables:

X10 CONGRUENT HUGE=true: Specify that the runtime should use large pages for the
congruent memory allocator (16M pages). Default to false (64K pages).

X10 CONGRUENT BASE=0x3000000000: Specify the base memory address for the con-
gruent memory region.

X10 CONGRUENT SIZE=0x800000000: Specify the size of the congruent memory re-
gion.

B.1.2 Optimized Collectives

On the Hurcules system, fast collective operations employing shared memory and
the Collective Acceleration Unit (CAU) require both MP SHARED MEMORY=yes and
MP COLLECTIVE GROUPS=4.

B.1.3 X10 compiler options for performance tuning

Programmers may find it convenient to adopt the following methodology.

When initially developing the application, run with no compiler flags set. No optimiza-
tions will be performed. Dynamic checks will silently be generated for those constraint
type checks which cannot be satisfied by the compiler.

When the code is running satisfactorily, you may wish to improve performance. Setting
the -STATIC CHECKS option will cause the compiler to print out errors if constrained
types cannot be verified statically. These can typically be fixed by examining the of-
fending code, and adding missing constraint clauses at variable/parameter declaration
sites. The advantage of doing this is that the code records more precisely the constraints
that hold at run-time, and no run-time code is generated.

To enable full optimizations with the x10c++ compiler specify additionally the -O,
-NO CHECKS options. The first option turns on compiler optimization and the second
turns off array bound checks.

To enable use of the PAMI transport with the x10c++ compiler specify the option
-x10rt pami.

B.2 POE Settings

We recommend setting the following POE environment variables for optimal perfor-
mance on most X10 benchmarks:

B.2. POE SETTINGS 91

MP_RESD=poe

MP_EUILIB=us

MP_EUIDEVICE=sn_single

MP_DEVTYPE=hfi

MP_MSG_API=X10

MP_SHARED_MEMORY=yes

MP_CPU_USE=unique

MP_ADAPTER_USE=dedicated

MP_USE_BULK_XFER=yes

MP_TASK_AFFINITY=core

MP_COLLECTIVE_GROUPS=4

X10_STATIC_THREADS=1

X10_NTHREADS=1

X10_CONGRUENT_HUGE=1

X10RTTRANSPORT=‘‘-x10rt pami’’

To bind X10 places to CPU cores (to prevent the OS from migrating places to other
cores). use the X10RT CPUMAP environment variable. This points to a CPU map file,
which like the MP HOSTFILE, depends on the layout of X10 places.

X10 programs can be launched directly using POE, or can be batched using LoadLeveler.
The necessary POE libraries are linked in, so the binary can be launched directly, e.g.
./a.out, or via the POE command with poe ./a.out. When launching with POE,
the MP PROCS and MP HOSTFILE environment variables should be set, to control the
distribution of the program on the system. The value for MP PROCS is the number of
X10 places. When using LoadLeveler, the values for the number of places and layout
is defined in your LoadLeveler script.

Details of exact command-line arguments for running with POE at various scales are
provided in the run script included with every benchmark.

	I Programming Framework
	Why X10?
	X10 basics
	Core Object-oriented features
	Class
	Structs
	Function literals

	Statements
	Types
	Generic types
	Constrained types
	Type definitions

	The APGAS model
	Async
	Finish
	The rooted exception model

	Atomic
	Places
	Motivation
	The at construct
	GlobalRef
	PlaceLocalHandle

	The X10 Performance Model
	Fundamental X10 Performance Model
	X10 Type System
	Distribution
	Async and Finish
	Exceptions

	X10 v2.2.3 Implementation Overview
	X10 v2.2.3 Runtime
	Distribution
	Concurrency
	Synchronization

	X10 v2.2.3 Compilation
	Classes and Interfaces
	Primitives and Structs
	Closures and Function Types
	Generics
	Memory Management
	Other Considerations

	Final Thoughts

	II Programming Examples
	Basic Multi-Place Idioms
	HelloWholeWorld
	Stream
	Problem
	Solution design
	Code

	Optimizing Communication
	Memory allocation and network hardware
	Enabling RDMA and Asynchronous Copy
	Customized Memory Allocation
	Teams and other hardware optimizations

	Random Access
	Problem
	Solution Design
	Code

	KMeans: Unsupervised clustering
	Problem
	Solution design
	Code

	Fourier Transform
	Problem
	Solution design
	Code

	LU Decomposition
	Problem
	Solution design
	Code

	Unbalanced computations
	Unbalanced Tree Search
	Problem
	Solution Design
	Code

	III Conclusion and Appendices
	Conclusion
	References
	Building X10
	Network transport implementations
	Building the X10 runtime
	Building your program

	Running X10
	X10 Variables
	Congruent Memory Allocator
	Optimized Collectives
	X10 compiler options for performance tuning

	POE Settings

