
Quiz 2 Name:
10/17/12

1. For each code snippet, state whether it is safe and argue why or
why not.

(a) This code is safe. Elements in Rail b are
updated atomically (i.e., operations on
shared mutable state commute) so the
parallel program gives the same answer
as a serial one.

1 def hist(a:Rail[Int], b: Rail[Int]) {

2 finish for(var i:int=0; i < a.length; i++) async {

3 finish {

4 val bin = a(i) % b.length;

5 atomic b(bin)++;

6 }

7 }

8 }

(b)
• Suppose id is unique and

"edge.parent.id = this.id" is changed
to "edge.parent = this". In that case,
this program is safe. It computes a
self-defined Minimum-Spanning-
Tree, where each node is only
connected to the node with smallest
id in its original neighbors. Since
this tree is unique, the parallel and
serial executions give the same
result.

• If id is not unique or we still use
"edge.parent.id = this.id" the pro-
gram is not safe, because there are
multiple possible results from the
serial execution.

1 class Node {

2 val id:Int;

3 var edges:Rail[Node];

4 var parent:Node = null;

5 def this(id:Int,e:Rail[Node]) { this.id=id; this.edges=e; }

6 def mst() { finish traverse(); }

7 def traverse() {

8 for (edge in edges.values()) async {

9 atomic {

10 if (edge.parent == null) {edge.parent=this; edge.traverse();}

11 else if (edge.parent.id > this.id) edge.parent.id = this.id;

12 }

13 }

14 }

15 }



quiz 2 name: 2

2. Consider the serial tree sum code below.

1 class Tree {

2 var i:Int = 0;

3 var result:Int;

4 var left:Tree, right:Tree;

5 def this(){}

6 def this(l:Tree, r:Tree) { this.left=l; this.right=r; }

7

8 def sum(nthreads:Int) {

9 if (left != null) ls = left.sum(nthreads);

10 if (right != null) rs = right.sum(nthreads);

11 result = (left == null ? 0 : left.result) + (right == null ? 0 : right.result);

12 }

13 }
See the source code at http://www.cs.
columbia.edu/~martha/courses/4130/

au12/Tree.x10. All versions of parallel
sum are safe, as there is no shared
mutable state. Only par2 and par3 scale
well, with only par3 scaling even with
unbalanced trees. See the comments at
the top of the file for data.

(a) Write a parallel version of Tree.sum() to that will provide as
good speedups as possible on a multi-core machine with 2 to
30 cores. Note that the tree may have millions of nodes. You are
free to use async, finish, atomic, when, collecting finish.

(b) Argue why your code will scale well up to 30 threads.

(c) Is your code safe? Why or why not?

http://www.cs.columbia.edu/~martha/courses/4130/au12/Tree.x10
http://www.cs.columbia.edu/~martha/courses/4130/au12/Tree.x10
http://www.cs.columbia.edu/~martha/courses/4130/au12/Tree.x10

