1
2
3
4
5
6
7
8
9
o

1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Quiz 1 Name:
9/24/12

Examine the code below and tell us the result that will be printed
by each of the four println()s found in main(). For full credit, out-
line your reasoning for each answer.

Line o0 = 32
class Test { f(0) =
def f(x:Long):Long = x < 2 ? 1#x : F(x-1)*F(x-2); f1)y=2
f2)=2-1=2
def g(m:Long):Long { f8)=2-2=4
var result:Long=2L, a:lLong=1L; f4)=2-4=
for (y in 2L..m) { f(5)=8-4=32
val b=result;
result *=a; Line 1 = true
a=b; This iterative serial code performs
} the same computation as the recursive
return result; serial code in ().
}
Line2="7?
def p(m:Long):Long { This parallel implementation of the
var result:Long=2L, a:lLong=1L; iterative algorithm will compute the
finish for (y in 2L..m) async { same as the serial when the loop bodies
val b=result; are executed atomically. However, this
atomic { is not guaranteed as only part of the
result *=a; body is actually atomic. Therefore, this
a=b; code is nondeterministic, with some
} interleavings yielding 32 and others not.
}
return result;
} Line 3 = false
This multiplace implementation will
def a(m:Long):Long { not return the correct result. To begin
val result=new Cell[Long](2L), a=new Cell[Long](1L); with, the result from Place o is returned
val P=Place.MAX_PLACES; — results from other places are never
finish for (y in 2L..m) at (Place((y%P) as Int)) async { shared back. Moreover, the values
val b=result(); will be incorrect in many places as the
atomic { code assumes global references to a
result() *=a(); and result which are not GlobalRefs.
a()=b; Finally the atomicity issue that was
} present in the previous part remains in
} this one.
return result();
}

public static def main(args:Rail[String]) {
val x = new Test();
val v= args.size>0? Long.parseLong(args(0)):5L;
val ans=x.f(v);
Console.OUT.println(ans); // Line 0
Console.OUT.println(ans==x.g(v)); // Line 1
Console.OUT.println(ans==x.p(v)); // Line 2
Console.OUT.println(ans==x.a(v)); // Line 3



