
Quiz 1 Name:
9/24/12

Examine the code below and tell us the result that will be printed
by each of the four println()s found in main(). For full credit, out-
line your reasoning for each answer.

Line 0 = 32

f (0) = 1
f (1) = 2
f (2) = 2 · 1 = 2
f (3) = 2 · 2 = 4
f (4) = 2 · 4 = 8
f (5) = 8 · 4 = 32

Line 1 = true
This iterative serial code performs

the same computation as the recursive
serial code in f().

Line 2 = ?
This parallel implementation of the

iterative algorithm will compute the
same as the serial when the loop bodies
are executed atomically. However, this
is not guaranteed as only part of the
body is actually atomic. Therefore, this
code is nondeterministic, with some
interleavings yielding 32 and others not.

Line 3 = false
This multiplace implementation will

not return the correct result. To begin
with, the result from Place 0 is returned
– results from other places are never
shared back. Moreover, the values
will be incorrect in many places as the
code assumes global references to a

and result which are not GlobalRefs.
Finally the atomicity issue that was
present in the previous part remains in
this one.

1 class Test {

2 def f(x:Long):Long = x < 2 ? 1+x : f(x-1)*f(x-2);

3

4 def g(m:Long):Long {

5 var result:Long=2L, a:Long=1L;

6 for (y in 2L..m) {

7 val b=result;

8 result *=a;

9 a=b;

10 }

11 return result;

12 }

13

14 def p(m:Long):Long {

15 var result:Long=2L, a:Long=1L;

16 finish for (y in 2L..m) async {

17 val b=result;

18 atomic {

19 result *=a;

20 a=b;

21 }

22 }

23 return result;

24 }

25

26 def a(m:Long):Long {

27 val result=new Cell[Long](2L), a=new Cell[Long](1L);

28 val P=Place.MAX_PLACES;

29 finish for (y in 2L..m) at (Place((y%P) as Int)) async {

30 val b=result();

31 atomic {

32 result() *=a();

33 a()=b;

34 }

35 }

36 return result();

37 }

38

39 public static def main(args:Rail[String]) {

40 val x = new Test();

41 val v= args.size>0? Long.parseLong(args(0)):5L;

42 val ans=x.f(v);

43 Console.OUT.println(ans); // Line 0

44 Console.OUT.println(ans==x.g(v)); // Line 1

45 Console.OUT.println(ans==x.p(v)); // Line 2

46 Console.OUT.println(ans==x.a(v)); // Line 3

47 }

48 }


