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Abstract

On shared-memory systems, Cilk-style work-stealing [5]
has been used to effectively parallelize irregular task-graph
based applications such as Unbalanced Tree Search (UTS)
[24, 28].

There are two main difficulties in extending this approach
to distributed memory. In the shared memory approach,
thieves (nodes without work) constantly attempt to asyn-
chronously steal work from randomly chosen victims until
they find work. In distributed memory, thieves cannot au-
tonomously steal work from a victim without disrupting its
execution. When work is sparse, this results in performance
degradation. In essence, a direct extension of traditional
work-stealing to distributed memory violates the work-first
principle underlying work-stealing. Further, thieves spend
useless CPU cycles attacking victims that have no work, re-
sulting in system inefficiencies in multi-programmed con-
texts. Second, it is non-trivial to detect active distributed ter-
mination (detect that programs at all nodes are looking for
work, hence there is no work). This problem is well-studied
and requires careful design for good performance. Unfortu-
nately, in most existing languages/frameworks, application
developers are forced to implement their own distributed
termination detection.

In this paper, we develop a simple set of ideas that al-
low work-stealing to be efficiently extended to distributed
memory. First, we introduce lifeline graphs: low-degree, low-
diameter, fully-connected directed graphs. Such graphs can
be constructed from k-dimensional hypercubes. When a
node is unable to find work after w unsuccessful steals, it
quiesces after informing the outgoing edges in its lifeline
graph. Quiescent nodes do not disturb other nodes. A qui-
esced node is reactivated when work arrives from a lifeline,
and itself shares this work with those of its incoming lifelines
that are activated. Termination occurs precisely when com-
putation at all nodes has quiesced. In a language such as X10,
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such passive distributed termination can be detected auto-
matically using the finish construct – no application code is
necessary.

Our design is implemented in a few hundred lines of X10.
On the binomial tree described in [26], the program achieve
87% efficiency on an Infiniband cluster of 1024 Power7 cores,
with a peak throughput of 2.37 GNodes/sec. It achieves 87%
efficiency on a Blue Gene/Pwith 2048 processors, and a peak
throughput of 0.966 GNodes/s. All numbers are relative to
single core sequential performance. This implementation has
been refactored into a reusable global load balancing framework.
Applications can use this framework to obtain global load
balance with minimal code changes.

In summary, we claim: (a) the first formulation of UTS
that does not involve application level global termination
detection, (b) the introduction of lifeline graphs to reduce
failed steals (c) the demonstration of simple lifeline graphs
based on k-hypercubes, (d) performance with superior effi-
ciency (or the same efficiency but over a wider range) than
published results on UTS. In particular, our framework can
deliver the same or better performance as an unrestricted
random work-stealing implementation, while reducing the
number of attempted steals.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Algorithms, Design

Keywords UTS, global load balancing, distributed comput-
ing, X10, work-stealing, parallel programming

1. Introduction

The emergence of new architectures that emphasize dis-
tributed memory — clouds and commodity clusters, P7, and
Blue Gene – provides significant new opportunities for ap-
plication developers. New application areas such as business
analytics, data mining are presented with unparalleled op-
portunities to deal efficiently with large workloads. How-
ever, these exciting opportunities bring new challenges for
parallel system designers.

The APGAS programming model [30] provides a useful
and convenient framework for stating these problems and
their solutions. The parallel system is viewed as a collec-
tion of places. Data is partitioned across the places with sup-
port for selective replication. In addition to remote data ac-
cess through one-sided communication primitives, activities
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can be launched on remote places. This allows complemen-
tary approaches to move the data or the computation as
they match the application domain (e.g., linear algebra vs
tree traversal). The APGAS framework also subsumes other
newer programming models such as Map-Reduce [8]. Map-
Reduce frameworks such as Hadoop allow parallel process-
ing of large files using user-defined map and reduce opera-
tions. However, it is challenging to rewrite well-established
parallel algorithms to fit the map-reduce model.

A fundamental problem in achieving the promise of scale-
out computing in such a programming model is the global
load-balancing problem. Many problems can be conceptualized
in terms of distributed task collections, with dependences
between them expressed as data or control dependences. In
this paper, we focus on task collections with no dependences.
In addition, the tasks encapsulate all data needed for their
processing and do not take advantage of the global address
space.

Dynamically load balancing such a computation assumes
these tasks to be mobile — they can be executed anywhere
and do not exhibit affinity to a place. This paper presents a
solution to the global load balancing problem for such a task
collection.

This problem has been studied in the context of shared-
memory systems. In a typical design, the tasks to be pro-
cessed at each place are placed in a deque. The worker at
a given place processes tasks from the top, while thieves
steal from the bottom of the deque. Workers continues to
processes it local tasks until they run out of work. Thieves
attempt to minimize their idle time by looking for work to
steal. If T1 is the time to run a program with one worker
and T∞ is the time required to run the same program with
an infinite number of workers, then Tp, the time to run this
program with P workers is T1/P + T∞. Simultaneously, the
space required to run a program with P workers is bounded
by P ×S(1), where S(1) is the space required to run the pro-
gram with one worker. This approach is usually referred to
as “work-stealing”.

Although work-stealing appears simple at the outset and
has attractive space and time bounds, efficient parallelization
of applications using the work-stealing scheduler requires
careful engineering. The key factor in getting optimal per-
formance in a work-stealing scheduler is reducing the crit-
ical path overhead; that is, a worker busy with work must
continue with this work and not be interrupted to help a
thief. Implementations, such as Cilk’s “THE” protocol [15]
have been carefully designed so that a worker thread does
not pay more than the cost of a volatile write in all those
cases where it is not a victim. In fact, the THE protocol also
ensures that victims do not pay the cost of locking and un-
locking the deque unless there is a single task to be wres-
tled for. However, if the worker is a thief, it has to acquire a
lock before stealing a task from the victim. In this schedul-
ing scheme, contention arises when: (1) multiple thieves try
to steal from the same victim, (2) there is a single task on the
victim’s deque, or (3) both.

In a distributedmemory setting, local and remote data ac-
cesses incur different costs — the cost of communication can-
not be ignored. Additionally, different communication oper-
ations might incur very different costs (eg., lock operations
vs data access). While lock contention can be expensive in
shared memory machines, it has been shown to dramatically
impact parallel efficiency at scale in distributedmemory con-
texts [11]. On many architectures, the operations involved in
stealing work are not supported in hardware. As a result,

steals interrupt the remote worker, incurring additional cost.
In particular, the time to process a given set of tasks depends
not just on the tasks being processed, but potentially also on
the number interruptions due to incoming steal requests.

One central problem is termination detection [4, 9, 10, 14].
In the usual formulation, computation must terminate once
it is the case that everyworker is looking for work; for then no
worker has work. In the shared memory case, this can be im-
plemented with a simple barrier algorithm. When a worker
finishes its work, it checks into the barrier. If it finds it is the
last worker to check into the barrier, it signals termination
to all other workers. Otherwise it looks for work randomly,
periodically checking to see if termination has been signaled
(and terminating if it is). If it finds work, it checks out of the
barrier before claiming the work, thus guaranteeing correct-
ness.

As the number of workers scales, repeatedly checking into
and out of the barrier can cause performance problems, and
more scalable algorithms have to be designed. [26] proposes
that workers enter the barrier only when they are “nearly
certain” that there is no work in the system. This heuristic
decision is made as follows. The worker randomly selects a
victim. If the victim has no work, the thief moves to the next
worker. Once it completes a circuit of all workers it makes the
decision that there is likely no work in the system and enters
the barrier. These additional traversals are of size O(P ) and
can increase the latency to termination.

On scale out, the single location can become a bottleneck.
Instead a combining tree must be used [11]. A node forwards
a termination signal only when it has processed all its work.
The algorithm involves phases of signaling up and down the
tree. In the up phase, each node signals its parent for suc-
cessful termination only if such a decision is reported by this
node and its children. In the down phase, each node for-
wards the signal to its children and exit task processing if a
terminate signal was received. The root of the tree broadcasts
a terminate signal through its children only if its children and
itself voted for termination. When a victim of a steal since the
last vote becomes idle, it votes not to terminate. Thus termi-
nation is successfully detected by the root node only when
all nodes participate in the up phase with no steals since the
last up phase. This results in multiple termination detection
phases during the computation, which is also slowed down
due to active stealing by the nodes.

We contrast the problemwith the (somewhat dual) passive
termination detection problem in X10. In X10 any activity may
spawn (“push”) more activities on any node in the system.
A finish operator must detect when all activities spawned
within its scope have terminated. In contrast with the active
version of the problem, worker threads at each place are
passive, they wait for the arrival of messages containing
work rather than actively searching for work themselves.

X10 implements a particular version of vector counts to de-
tect passive termination. Each worker maintains a vector of
counts, one per place.1 This vector tracks how many asyncs
this place has created remotely, and how many asyncs have
terminated at this place. Once a place has quiesced (there
is no activity running at that place), it sends its vector to
the place that spawned the finish. This place simply sum-
reduces the count (component-wise). Termination is detected
once (and only once) the reduced vector is zero. For compu-
tations in which a place spawns computations at only a few
other places, say bounded by a constant z, only vectors of

1This vector is usually very sparse and is maintained sparsely.
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size z need to be communicated between places. Note that
these design does not involve speculative waves of termina-
tion detection, rather it simply monotonically accumulates a
set of vector counts, until the set reduces to zero.

When attempting to solve the UTS problem in X10 the
natural question is whether finish can be used to implement
UTS termination detection.

The central contribution of this paper is that it can. We
show that global work stealing can be elegantly formulated
as a simple X10 program using async, at and finish. The
details are in the next section, we summarize the basic prin-
ciples here.

Initially one async is launched at every place, under the
control of a single finish. The termination of this finish will
signal global termination. These asyncs will initially attempt
to look for work by guessing a random id, and looking for
work at the place with that id. This can be done using the at
operator, without spawning any new asyncs. Now in “pure”
work-stealing, if the async did not find any work at this
victim, it will continue looking for work at other victims.
This leads immediately to the active termination detection
problem: when should the async know to stop looking for
work, because there is no work?

Our key insight is to perform such random steals at most
w times, where w is some pre-determined bound. If no work
has been found after w attempts, the async terminates. How-
ever, before it does so, it establishes one or more lifelines. A
lifeline is simply another place. Establishing a lifeline means
checking if that place has work, and if so performing a steal,
as usual. But if that place does not have work then the id of
the thief is recorded at that place as an “incoming” lifeline.
Since that place does not have any work, it must itself, recur-
sively, have established a lifeline. Once a place finds some
work, it checks to see if any incoming lifelines have been
recorded. If so, it distributes a portion of its work to this life-
line q, and clears it. Distribution is performed by spawning
an async at place q, which re-initiates activity at q. Now it can
be seen that there is no more work left to do precisely when
all the asyncs in the system have terminated – and this condi-
tion will, of course, be detected by the single top-level finish.

1.1 Lifeline graphs

While the lifeline scheme is correct, it may not be efficient.
How are lifelines determined? A natural possibility is that
a lifeline is simply another place chosen at random. But it
is easy to see this would not work. Place p may randomly
choose to make q its lifeline, and simultaneously q could
choose to make p its lifeline. As a result both places will be
dead – they will not have any running activity and will never
get one. Hence throughput and scalability will suffer. A good
lifeline graph must have the property that as long as there is
a place which has work, there must be a path from that place
to every other place in the system.

Another alternative is to base the lifeline graph on a per-
mutation with cycle of length P . For instance, each place p
can be mapped to place (p + 1)%P . This guarantees that the
only cycle is of length P : thus a place will be involved in a
cycle only if all places are involved in it, i.e. only when there
is no work.

This scheme is correct and works reasonably well for
small P . The problem is that it takes on the average P/2
hops for work to reach a place from another place. During
this time the target place is idle.

An alternative would be to consider the fully connected
graph, with an edge from every vertex to every other vertex.

While this ensures that tasks have to take only one hop to
reach an idle worker, it creates the problem that tasks at
one site have to be divided up into many pieces, one for
each incoming lifeline. Workers with tasks on their hand
may waste cycles moving tasks to their (many!) incoming
lifelines, instead of executing them.

We are interested therefore in (directed) graphs that have
the following properties. (a) Each vertex must has bounded
out-degree. (b) The graph must be connected, (c) The graph
must have a low diameter (there should be short paths from
every vertex to every other vertex).

A parametric family of graphs that satisfy this property
are the cyclic hypercubes defined as follows. Choose a radix h
and a power z such that hz−1 < P ≤ hz (P is the number of
processes/places). Each vertex p is represented as a number
in base h with z digits. It has an outgoing edge to every ver-
tex a distance +1 from it in the Manhattan distance (in mod-
ulo h arithmetic). That is, the vertex p labeled (a1, . . . , az)
has an outgoing edge to every vertex q such that for some
i ∈ 1..z, q = (a1, . . . , (ai + 1)%h, . . . , az). In two dimensions
(z = 2), we have a square of size h2 with all the elements in
a row connected in a cycle, and all the elements in a column
connected in a cycle.

In such a graph the average number of hops for work to
travel from one place to another is (h × z)/2.

One final point is worth mentioning. Usually P < hz , and
so P must be embedded in a graphwith hz nodes. Care must
be taken to ensure that each place is connected to the next
node in that dimension that represents a real, distinct place.
This may mean that in a particular dimension a node has no
neighbor (i.e. it has less than z lifelines). It is not difficult to
show that for every P > 1 every node must have at least one
neighbor.

1.2 Results

The lifeline scheme has been implemented in X10. The core
implementation for binomial trees (presented in the next sec-
tion) is around 150 lines of code (not counting the imple-
mentation of SHA1Rand). 2 The full implementation – with
libraries for w-adic numbers, support for geometric trees,
command-line processing, timing, data-collection and com-
ments – is about 1500 lines.

The same code has been timed on three different plat-
forms – a small x86-Infiniband cluster (Triloka), a Blue
Gene/P machine and a Power7-Infiniband cluster. On the
157 billion node binomial tree reported on in [26], the im-
plementation shows an efficiency of 87% for 1024 cores on
BG/P (483.2 vs 0.54 M Nodes/sec), and 86% for 1024 cores
on Power7 (2371 vs 2.7 MNodes/sec), and 94% for 128 cores
on x86 (253.4 vs 2.1 MNodes/sec). All comparisons are with
sequential performance. These numbers contrast with the
80% efficiency reported in [26] on 1024 cores of an x86 clus-
ter. [11] reports 99% efficiency at 8192 cores as compared to a
baseline of 512 cores on an x86 cluster. These results involved
dedication of 1 out of the 8 cores in each SMP node to assist
in work stealing. As compared to the approach in this paper,
which utilizes all available cores to perform work, the effec-
tive efficiency reported in [11] is 87%. The efficiency numbers
reported here are over a larger range of process counts (se-
quential run vs 128 and 1024 cores, thus 128x and 1024x) as
compared to 8k/512 = 16x as reported in [11].

2Due to space constraints, we refer you to [25, 26] for the exact
description of both binomial and geometric trees.
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On a larger binomial tree, of size 416b, the implemen-
tation shows an efficiency of 87% for 2048 cores of BG/P
(966.11 vs 0.54 MNodes/sec).

We have also benchmarked the implementation on a ge-
ometric tree of size 109B. The implementation shows an ef-
ficiency of 89% (1683 vs 1.85 M Nodes/sec) on the Power7
cluster and an efficiency of 92% (357.6 vs 0.38 MNodes/sec)
on the Blue Gene/P cluster. 3

1.3 Rest of this paper

In the next section we present the scheme in more detail, il-
lustrating with the relevant fragments of X10 code. The code
is released under the Eclipse Public Licence and is available
from the X10 repository on Sourceforge.4

We present the results in more detail in Section 3. Finally
in Section 4 we discuss more details of related work.

2. Basic lifeline scheme

We now present the basic scheme by discussing the actual
X10 code for the implementation.

To understand the presentation below the following char-
acteristics of X10 must be kept in mind.

• An async(p) S statement launches an activity at place
p. This activity executes S and terminates. The invoking
activity continues immediately, without waiting for the
newly created activity to terminate.

• An at(p) S statement executes statement S synchronously
at place p. That is, the execution of the activity is sus-
pended until S terminates. An at(p) e expression evalu-
ates e at p and returns the result.

• A finish S statement executes statement S and waits un-
til all activities created during its execution have them-
selves (recursively) terminated. These activities may be
launched at the current place or some remote place.

• The implementation below assumes each place is running
a single worker, and workers are not dynamically cre-
ated.5

• Therefore user code must explicitly call Runtime.probe()
to service incoming (synchronous or asynchronous) re-
quests. It is up to user code to determine the frequency of
polling. (See below for a further discussion of this point.)

• Incoming messages are processed only at specific places
in user code, namely calls to Runtime.probe() in the user
code or to remote operation invocations (i.e., the asyn-
chronous async(p) S operation or synchronous at(p) S).
At this point zero or more incoming messages (async’s,
at’s) may be processed.6

• Since all data-structures are touched by a single worker
thread, no locks are needed to guarantee atomicity or
mutual exclusion.

3Let Ths and Thp be the throughputs achieved for a program when
run serially and in parallel with P processors, respectively. Then, we
define efficiency as Thp/(Ths × P ).
4 https://x10.svn.sf.net/svnroot/x10/benchmarks/trunk/UTS.
5The programmer ensures this by executing the program
with the environment variables X10 NUM THREADS and
X10 STATIC THREADS set to appropriate values.
6 X10 supports the bodies of incoming async’s and at’s may
themselves perform network operations, including Runtime.probe().
Thus user code must be written in such a way that it is prepared to
handle incoming messages recursively.

• Like Cilk, we use deques to store unexecuted tasks; the
owning process operates on the shallow end of the deque
(using it as a stack), whereas responses to stealing and
lifeline requests operate on the deep end of the deque.
This is important even in the absence of multiple threads
(i.e., contention) because it promotes cache reuse — there
is a greater chance that unexecuted tasks that have just
been spawned are not stolen and hence are still in cache.

• If no user code is running at a place, the X10 worker con-
tinues to run and will process incoming messages until a
termination signal is received from place 0.

The code below uses a deque, implemented as a circular
buffer. The deque supports push() and pop() operations on
one end and a steal(i) operation at the other end (the param-
eter i specifies the number of elements to remove).

The design satisfies the following invariants:

• At any time, at most one activity runs in a given place.

• At any time, at most one message has been sent on an
outgoing lifeline (and hence at most one message has
been received on an incoming lifeline).

First, an object is created at each place. This object main-
tains information about the state of the execution at that
place (e.g. counters). This object is referenced through a place
local handle, st(). This handle may be freely communicated
fromplace to place. At any placeP , the object associatedwith
this handle at that place may be obtained by simply applying
st() to the empty argument list, that is, evaluating st()7

Specifically the object maintains the following informa-
tion:

• various parameters associated with the tree being con-
structed. Of particular interest are: (a) nu, the maximum
number of tasks that will be popped for execution from
the dequeue before distribution and polling, (b) w, the
maximum number of random steals made before turning
to lifeline steals, (c) z, the dimensionality of the lifeline
graph, (d) k, the number of items to steal at a time (k = 0
for “steal half”).

• the Boolean control variable active that is true iff a user-
activity is running at the place.

• the Boolean control variable noLoot which is used to
record whether loot (number of stolen tasks) has arrived
asynchronously.

• the array lifelinesActivated contains a Boolean per place.
lifelinesActivated(p.id) is true only if this place has ac-
tivated the outgoing lifeline to p, and has not yet re-
ceived loot in return. In principle only z values need to
be recorded; the current implementation keeps an array
of P booleans.

• a stack thieves that records which incoming lifelines have
been activated. The size of this stack is bounded by z.

Launching work. Computation is initiated from place 0.
The given root node is expanded one level; this will typically
cause tasks to be added to the deque. Then an async is
spawned at each place (other than 0). The async is given an
initial apportionment of loot; this may be empty. Finally the
current activity continues by processing its own deque, after

7Effectively one may think of a place local handle as a handle to a
distributed array of elements; at any place, the id of that place may
be used to access the element of the array stored at that place.
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marking itself as active. Once it has finished processing its
stack, it terminates.

defmain (st:PLH, rootNode:TreeNode) {
finish {
processBinomialRoot (b0, rootNode, deque);
val lootSize = stack.size()/Place.MAX PLACES;
for (var pi:Int=1 ; pi<P ; ++pi) {
val loot = deque.steal(lootSize);
async (Place(pi))
st().launch(st, true, loot, 0);

}
active=true;
processDeque(st);
active=false;

}
}

When an activity is launched at a place p from place
s, it first resets the (local) Boolean flag lifelinesActivated(s)
at p (thus enabling code running at p to establish a new
lifeline back to s at a future point in time). It then checks
to see if an activity is already running (is active true?). If
so, it simply processes the loot and terminates. Otherwise
it becomes “the” activity at this place. After processing its
loot, it determines whether there are any incoming lifelines,
and if so distributes work through those lifelines. Finally it
processes all the elements remaining on its deque until the
deque is empty (note this could take a long time). It then
terminates. (Note that launch is invoked at place either by
the main activity or through the distribution mechanism –
see distribute below.)

def launch(st:PLH, init:Boolean,
loot:ValRail[TreeNode], depth:Int, source:Int) {
lifelinesActivated(source) = false;
if (active) {
noLoot = false;
for (r in loot) processSubtree(r);

} else {
active=true;
for (r in loot) processSubtree(r);
if (depth > 0)
distribute(st, depth+1);

processDeque(st);
active=false;

}}
def processSubtree (node:TreeNode) {

++nodesCounter;
binomial (q, m, node, deque);

}

Local work execution. The deque is processed in a loop
until empty. Each time around in the loop, at must nu items
are processed from the deque. The network is then probed to
handle incoming messages. If some thieves have registered
themselves, loot is distributed. When the deque becomes
empty, an attempt is made to steal from other workers. If no
loot is found8 the activity terminates, otherwise it resumes
processing the deque.

def processDeque(st:PLH) {
while (true) {
var n:Int = min(deque.size(), nu);
while (n > 0) {
for ((count) in 0..n−1)
processSubtree(deque.pop());

8 note that loot may arrive synchronously through the call to
attemptSteal() or it could arrive asynchronously through an incom-
ing distribution, discussed below

Runtime.probe();
val numThieves = thieves.size();
if (numThieves > 0)
distribute(st, 1, numThieves);

n = min(deque.size(), nu);
}
val loot = attemptSteal(st);
if (null != loot)
processLoot(loot, false);

else {
if (! noLoot) {
noLoot=true;
continue;

}
else
break;

}}}

We use a command line parameter (n) to control the fre-
quency of polling. This can affect the performance of the pro-
gram. Frequent polling incurs overhead and comes in the
way of the worker executing real work. Infrequent polling
means that steal requests from thieves are not processed
quickly, thereby stalling thieves. In practice we have found
n=511 or n=1023gives good results formost UTSworkloads.

Distributions. A distribution is made to an incoming life-
line only if there is enough work. Work is popped from
the deep-end of the deque. To distribute work, an async is
launched at the target place. Note that this async is governed
by the single finish in main().

def distribute(st:PLH, depth:Int) {
val n = thieves.size();
if (n > 0)

distribute(st, 1, n);
}
def distribute(st:PLH, depth:Int, var n:Int) {
val lootSize= deque.size();
if (lootSize > 2) {
n = Math.min(n, lootSize−2);
val s = lootSize/(n+1);
for ((i) in 0..n−1) {
val thief = thieves.pop();
val loot = deque.steal(s);
async (Place(thief))
st().launch(st, false, loot, depth);

}
}

}

Variousmodifications are possible and will be explored in fu-
ture work. Instead of dividing the current set of tasks evenly
among all the recipients, the donor could randomly select
one of the thieves and send it a portion of the loot (depend-
ing on the value of k). This would be a dual to random
work-stealing – here work is “pushed” to places that have
indicated earlier that they needed work (note they may no
longer need work, since some other lifeline may have sup-
plied them).

Another important consideration is that as the code is
written it copies the items out of the deque one at a time
for each target destination. An alternative would be for the
activity to block off portions of the deque and trigger asyn-
chronous DMA’s to transfer the loot to the destination. This
may result in better performance, particularly at high z’s, and
in cases where the size of the deque can grow large.

Stealing. To make a steal, an activity randomly guesses an-
other place, and uses the at operation to retrieve loot from
that place. It tries this at most w times, also breaking imme-
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diately if loot arrives asynchronously, for example because it
is being distributed on a lifeline.

If no loot is received during this phase, the activity tries
its lifelines one after the other, returning as soon as loot is
found. Care is taken to ensure that a request is not made
of an outgoing lifeline if a request has already been made
of that lifeline and no loot has been received from it so far.
The difference between the stealHandler() invocations in the
direct steal phase and in the lifeline phase is the second
argument: this is set to true only in the lifeline phase.

def attemptSteal(st:PLH):ValRail[TreeNode] {
if (Place.MAX PLACES == 1) return null;
for (var i:Int=0; i<w && noLoot; i++) {
var q :Int = 0;
val p=here.id;
while((q = myRandom.nextInt(Place.MAX PLACES))== p) ;
val q = q ;
val loot = at (Place(q)) st().stealHandler(p,false);
if (loot != null) return loot;

}
if (! noLoot) return null;
for (var i:Int=0;

(i<myLifelines.length()) && noLoot
&& 0<=myLifelines(i);
++i) {

val L:Int = myLifelines(i);
if (!lifelinesActivated(L) ) {
lifelinesActivated(L) = true;
val loot = at(Place(L)) st().stealHandler(p, true);
if (null!=loot) {
lifelinesActivated(L) = false;
return loot;

}}}
return null;

}

A try at a steal is handled by examining the size of the
deque. If the deque has enough tasks, then they are popped
from the deque and returned. Otherwise if isLifeLine is set,
the place making the try is recorded in the thieves stack (used
during distribution).

def stealHandler(p:Int, life:Boolean):ValRail[TreeNode] {
val length = deque.size();
val numSteals = k==0u ? (length >=2u ? length/2u : 0u)
: (k < length ? k : (k/2u < length ? k/2u : 0u));
if (numSteals==0u) {
if (life)
thieves.push(p);

return null;
}
return deque.steal(numSteals);

}

This is a very simple scheme and different from the im-
plementation used in [26] and the implementation described
in [11]. [26] implements steals as follows. Each worker polls
periodically. When it receives a steal request, it determines
the amount of loot to release and removes it logically from
the deque (without copying it out). It returns a remote ref-
erence to the loot. The thief then initiates a separate DMA
to retrieve the loot. This DMA request is handled purely by
the network adapter without disrupting the worker. Thus the
worker does not need to spend time copying the loot, and
avoids polluting its cache. [11] keeps an extra helper thread
on the side to perform the control operations necessary for
stealing. Data is also transfered by DMAwhere possible.

X10 has idioms for expressing DMA transfer to remote
locations. However for the trees we are considering, the loot
to be transferred is rarelymore than a few hundred elements,

and stealing is relatively infrequent. For such systems it is not
clear that the more elaborate implementationwins.9 In future
work we plan to implement DMA steals and evaluate the
trade-off on various examples within the context of a unified
implementation.

Consistent with the results reported in [26], we have
found that “steal half” works best for binomial trees. This
is not surprising given that the binomial tree is such that
each node has the same potential to generate work. Stealing
half leads to more rapid diffusion of work through the sys-
tem. This is in contrast to the fixed-function geometric tree in
which nodes higher in the tree have a much greater potential
to generate work than nodes lower in the tree. For such sys-
tems steal-half gives poor performance and fixed-size steals
are better. In particular for the geometric trees we have inves-
tigated, we have found that stealing 7 items at a time works
well.

3. Results and Analysis

The results presented in this paper were obtained by compil-
ing the programwith the 2.0.5 version of the X10 compiler.

All speedups are reportedwith respect to the performance
of a sequential implementation of UTS. The sequential pro-
gram is iterative and uses the same deque data-structure
used by the parallel program to record the nodes of the tree
being constructed. It does not have any parallel overheads
associated with it – specifically it does not invoke the probe
operation. However, because sequential runtimes for large
trees can be very large, we reduced the size of the input on
which the sequential program was run. Table 1 gives a de-
tailed description of the trees used to test the sequential per-
formance of UTS on our test machines.
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Tree size = 157063485501 nodes, Performance = 257.64 M nodes/sec 
Run params:  -r 559 -q 0.4999995 -w 1 -z 3 -m 2 -b 2000
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Figure 1. States of the compute nodes during the execution
of X10’s UTS application execution over time for a BINO-
MIAL tree of size 157 billion nodes. The results were col-
lected on IBM’s Triloka Linux cluster. Each node attempted 1
random steal (the parameter w) before resorting to one of its
3 lifelines (the parameter z).

9We instrumented our implementation and determined that the
worker was spending less than 0.01% of its compute time in copy-
ing this data. This analysis did not account for cache misses due to
pollution.
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Machine Tree type t r b m q a d Tree size MNodes/sec
Triloka BINOMINAL 0 559 2000 2 0.49995 — — 57354859 2.104

ANL-BG/P BINOMINAL 0 559 2000 2 0.4995 — — 2859057 0.54
P7HV32 BINOMIAL 0 42 20000 6 0.166666665 — — 510009729 2.7
P7HV32 GEOMETRIC 1 0 4 — — 3 10 6700654 1.85

IBM-BG/P GEOMETRIC 1 0 4 — — 3 10 6700654 0.37

Table 1. As sequential execution (not parallel execution on 1 node) of UTS for very large trees requires excessive machine time,
the sequential performance of UTS on various machines for both BINOMIAL and GEOMETRIC trees was measured using
smaller trees. The command-line parameters used to generate the trees for sequential benchmarking are shown in this table. For
a full explanation of the meaning of the command-line parameters to UTS, please refer to [24]. ANL-BG/P and IBM-BG/P are
abbreviations for the Blue Gene/P clusters at Argonne National Laboratory and IBM T.J. Watson Research Center,respectively.
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Figure 2. States of the compute nodes during the execution
of X10’s UTS application execution over time for a BINO-
MIAL tree of size 157 billion nodes. The results were col-
lected on IBM’s Triloka Linux cluster. Each node attempted
83 random steals (the parameter w) before resorting to its sin-
gle lifeline (the parameter z).
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Figure 3. UTS speedup achieved for a 157 billion node BI-
NOMIAL tree on IBM’s Triloka cluster. The speedup shown
is based on the sequential performance of UTS, which is
2.104 million nodes per second. The parameter w indicates
the number of random steals attempted before resorting to
lifelines. The parameter z indicates the number of lifelines
for each compute node. The UTS revision number used was
15277.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100  200  300  400  500  600  700  800  900  1000  1100

S
p

e
e

d
u

p

Number of Processors

Tree=BIN ,Size=157B  nodes
GEN-PARAMS: r=559, b=2000, m=2, q=0.4999995

w=862,z=1
w=200,z=1
w=1,z=3

Figure 4. UTS speedup achieved for a 157 billion node BI-
NOMIAL tree on Argonne National Lab’s Blue Gene/P clus-
ter. The speedup shown is based on the sequential per-
formance of UTS, which is 0.54 million nodes per second.
The parameter w indicates the number of random steals at-
tempted before resorting to lifelines. The parameter z indi-
cates the number of lifelines for each compute node. The UTS
revision number used was 15277.

3.1 Experimental Platforms

We used three different experimental platforms for our em-
pirical evaluation.

• Triloka: a small cluster of 16 IBM LS-22 blades connected
by a 20Gb/sec IB network. Each node has 2 quad-core
AMD 2.3Ghz Opteron processors, 16 GB of memory, and
is running Red Hat Enterprise Linux 5.3.

• Blue Gene/P: We used the surveyor and intrepid

systems located at the Argonne National Labratory and
the Watson4P system located at the IBM T.J. Watson Re-
search Center. Each compute node in a Blue Gene/P sys-
tem has 2 GB of memory and 4 850 MHz PowerPC 450
processors each with a dual floating point unit.

• P7HV32: This is a 32-node Power7 cluster interconnected
by Infiniband. Each compute node has 32 3.3 GHz pro-
cessor cores, 128GB of physical memory and runs SuSE
Linux Enterprise Server v 11.1 for ppc64.
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Figure 5. UTS speedup achieved for a 157 billion node BI-
NOMIAL tree on IBM’s P7HV32 cluster. The speedup shown
is based on the sequential performance of UTS of the same
problem, which is 2.7 million nodes per second. The parame-
terw indicates the number of random steals attempted before
resorting to lifelines. The parameter z indicates the number
of lifelines for each compute node. The UTS revision number
used was 15294.
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Figure 6. UTS speedup achieved for a 416 billion node BI-
NOMIAL tree on Argonne National Lab’s Blue Gene/P clus-
ter. The speedup shown is based on the sequential per-
formance of UTS, which is 0.54 million nodes per second.
The parameter w indicates the number of random steals at-
tempted before resorting to lifelines. The parameter z indi-
cates the number of lifelines for each compute node. The UTS
revision number used was 15277.
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Figure 7. UTS speedup achieved for a 109 billion node GE-
OMETRIC tree on IBM’s Blue Gene/P cluster. The speedup
shown is based on the sequential performance of UTS of
the same problem, which is 0.37 million nodes per second.
The parameter w indicates the number of random steals at-
tempted before resorting to lifelines. The parameter z indi-
cates the number of lifelines for each compute node. The UTS
revision number used was 15290.
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Figure 8. UTS speedup achieved for a 109 billion node GEO-
METRIC tree on IBM’s P7HV32 cluster. The speedup shown
is based on the sequential performance of UTS of the same
problem, which is 1.85 million nodes per second. The pa-
rameter w indicates the number of random steals attempted
before resorting to lifelines. The parameter z indicates the
number of lifelines for each compute node. The UTS revision
number used was 15294.
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On all platforms,we usedX10 version 2.0.5.We used the C++
backend, which compiles10 the X10 source code to C++ files
which are then compiled into an executable using a standard
C++ compiler. The generated C++ code was compiled with
g++ v 4.3.2 on Triloka; g++ v 4.1.2 on Blue Gene/P and g++
v 4.3.4 (Power specific version) on P7HV32.

3.2 Discussion

Figure 1 and Figure 2 show the “lifestory” of a test run. We
instrumented the application to record events corresponding
to state transitions (i.e. transitions between computing, steal-
ing, distributing, probing and idle) at each place. The start time
for these lifestories was normalized to 0 to account for clock
skew between the nodes. The histories were then merged in
an order preserving way to determine the composite picture
presented here. The picture shows at each instant the number
of places that were computing, stealing, distributed or dead.

The two graphs are for different values of (w, z), viz. (1, 3)
and (83, 1). Even though the throughput for both runs was
the same, the graphs show variations in micro-structure. In
particular, the computation with the high w value spends
22% more time stealing than the computation with the low
w (not surprisingly) — the green area is substantially larger,
and there is a visible dead area towards the end of the com-
putation.11 The graphs were fairly small and run on small
number of cores; we expect the differences to be more pro-
nounced with increase in number of cores.

Figure 3 shows speedup for the small x86 Triloka clus-
ter. The implementation achieves 94% efficiency vs sequen-
tial execution for 128 cores. While not indicated here, similar
performance curves were obtained for other combinations of
w and z for this configuration. The speedups are measured
with respect to sequential performance numbers. Since prob-
lem sizes run on large machines are typically large, it is im-
practical to obtain sequential performance numbers by run-
ning the same program in sequential mode. Therefore we
compute sequential numbers by running the program on a
smaller tree of the same basic shape. The actual parameters
used to compute the sequential performance are given in Ta-
ble 1.

Figure 4 presents the data for multiple executions of the
157B tree from [26] for different points in the (w, z) space. It
can be seen that performance stays the same as w decreases
dramatically, while z is increased modestly. At 1024 cores,
the implementation delivers an efficiency of 87%. Figure 5
presents the data for this tree on the P7HV32 cluster, which
also delivers 87% efficiency at 1024 cores. Note that the re-
sults for high-w ((w, z) = (0.66 × P, 1)) are starting to get
marginally worse than results for high-z.12

Figure 6 shows that the efficiency is maintained, albeit at
a bigger tree size, as the core count is doubled.

Finally, Figure 7 and Figure 8 show speedup for a geo-
metric tree of 109B nodes on the Blue Gene/P and P7HV32
clusters respectively with varying values of w and z. The im-
plementation achieves an efficiency of 92% and 89% respec-

10The X10 compiler x10c++ was given the command line argu-
ments -O -NO CHECKS to enable optimizations and disable array
bounds and null pointer checking
11 For (w, z) = (83, 1), 1.835% of the total time was spent stealing,
as opposed to 1.43% for (w, z) = (1, 3).
12High w runs correspond to unrestricted random work-stealing.
High z runs (with w = 1) correspond to more extensive use of
lifelines.

tively. Again, high-w results tend to be slightly worse than
high-z results.

4. Related and future work

A fundamental requirement for efficient parallel execution
of a program is that work (both computational and other-
wise) be evenly divided amongst the available computing
resources; that is, the program’s execution must be well load
balancing. Many applications are regular; that is, these ap-
plications’ computations and the related data can be parti-
tioned apriori; regular programs can be efficiently load bal-
anced statically. However, there aremany applications which
are irregular and dynamic; that is, the computations and the
data sets in these applications cannot be partitioned a priori.
Irregular applications are extremely sensitive to load balanc-
ing, and place unique requirements on parallel programming
tools and runtimes that have not yet been satisfied. Till now,
the best solutions for efficient execution of irregular applica-
tions on distributed-memory systems have heavily involved
application-level dynamic load balancing.

Some of the early research on dynamic load balancing
for shared-memory systems was carried out in the Mul-T
Scheme [23] project; load balancing was achieved through
lazy task creation wherein threads would steal work from
one another when they ran out of work. Cilk [15], an exten-
sion to the C language, was the first system to provide ef-
ficient load balancing for a wide variety of irregular appli-
cations. Load balancing in Cilk applications is achieved by
a scheduler that follows the depth-first work, breadth-first steal
principle [5]. Cilk’s scheduling policy, in which each thread
of execution maintains its own set of tasks, and steals from
other threads on a need-by basis, is often dubbed as work-
stealing. Currently, there are many solutions for task paral-
lelism that offer work-stealing schedulers. Of these, OpenMP
3.0 [27], Intel’s Threading Building Blocks (TBB) [29], Mi-
crosoft’s Parallel Patterns Library (PPL), and Task Parallel
Library (TPL) are the most popular. The other variants of
Cilk-like work-stealing in today’s parallel frameworks in-
clude X10’s breadth-first [7] work scheduling policy and Guo
et al.’s [17] hybrid model for work stealing. Kambadur et
al. [19] show that different work-stealing strategies are re-
quired for different irregular applications, and present a li-
brary framework to that allows easy customization of load
balancing policies on shared memory. Berenbrink et al. [3]
prove that work-stealing, by virtue of taking a distributed
approach to load balancing processors, is stable.

The work-stealing approachesmentioned above efficiently
and dynamically load balances applications in a shared-
memory environment. However, these approaches are not
directly applicable to distributed-memorymachines because
of a variety of issues such as network latency and band-
width, and termination detection. Various bodies of work
have addressed the problem of dynamic load balancing on
distributed-memory machines. Grama et al. [16, 20] discuss
various load balancing strategies for distributed parallel
searches that are independent of the specific search tech-
nique. Blumofe et al. [6] adapt the Cilk work-stealing model
to distributed shared memory by limiting the scope of the
programs to be purely functional. ATLAS [1] and Satin [32]
both use hierarchical work-steal to acheive global load bal-
ancing. Charm++ [18, 31] monitors the execution of its dis-
tributed programs for load imbalance and migrates com-
putation objects to low-load places to correct the load im-
balance. Global load balancing for message passing environ-
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ments has been researched for specific problems by Batoukov
and Sorevik [2].

UTS, an excellent example of an irregular application,
was first described by Prins et al. [28]. Although they tried
various work-stealing strategies, they were unable to get
good speedups on distributed-memory systems on their
initial UPC [13] implementation; however, their implemen-
tation showed good performance on shared-memory ma-
chines. Later, Olivier et al. [24] formally introduced UTS as
a benchmark to measure a parallel system’s ability to dy-
namically load balance an application. Similar to [28], their
OpenMP and UPC implementations showed good speedup
on shared-memory systems, but not on distributed-memory
systems. Dinan et al. [12] studied the ability of MPI [21, 22]
to support dynamic load balancing required by UTS through
application-level load balancing techniques. In this study,
both centralized work-sharing and distributed work-stealing
approaches were tried, and it was shown that work-stealing
approaches with the right stealing granularity performed
better on a wider variety of workloads than work-sharing.
Olivier and Prins [26] provided the first scalable implementa-
tion of UTS on clusters that provided up to 80% efficiency on
1024 nodes. To this end, they employed a custom application-
level load balancer along with optimizations such as one-
sided communications and novel termination detection tech-
niques. Finally, Dinan et al. [11] provide a framework for
global load balancing, which was used to achieve speedups
on 8196 processors. Global load balancing and termination
detection facilities were provided to express irregular appli-
cations. By reserving one core per compute node on the clus-
ter exclusively for lock and unlock operations, this frame-
work allowed threads to steal work asynchronously without
disrupting the victim threads. However, the cost paid was a
static allocation (one core out of every eight) for communica-
tion. This results in lower throughput because the thread is
not available for user-level computations.

4.1 Future work

Develop an analytical framework for lifeline graphs. It ap-
pears to us that random work-stealing and lifeline distribu-
tion graphs are two sides of the same coin. We believe that
it should be possible to develop an analytical framework
for lifeline graphs which can predict the performance (effi-
ciency) of implementations with given values for parame-
ters.

Some initial experimentation we have done leads to the
possibility that high-z configurations deliver better perfor-
mance at high processor counts with lower CPU utilization.
Lower CPU utilization is of value in cloud-based multi-
tenancy installations. For the 157B tree at 2048 cores, we
observe 820 M Nodes/s for (w, z) = (1024, 1), and 828
M Nodes/s for (10, 10). (The (10, 1) performance is 797 M
nodes/s). Also as Figure 8 shows, at higher core counts high-
w runs tend to be worse than high-z runs. We plan to run
further experiments to investigate this phenomenon.

Implement adaptive stealing. [7] shows that the perfor-
mance of graph algorithms can be improved in a shared
memory context by using work-stealing with adaptive grain
size. Workers add chunks of tasks to the deque; a thief steals
one chunk at a time. The size of the chunk is determined by
the worker based on the current size of the deque. A large
deque means there is less demand for work, hence a larger
chunk can be built. We believe these ideas can be adapted
fruitfully to global load balancing.

Scaling out finish. We are interested in scaling computa-
tions to hundreds of thousands of cores. For this the current
X10 implementation of finish must be restructured to use
reduction trees and engineered to work at this scale.
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