
Establishing safety of X10 programs (v 0.1)
Vijay Saraswat

The goal of semantics is to specify a mathematically precise meaning for
programs in a given programming language. In this section we will be con-
cerned about specifying the semantics for a small imperative programming
language containing the core concurrency constructs of X10.

There are two main approaches to the semantics of programming lan-
guages – the denotational approach, and the operational approach.

In the denotational approach, one identifies a mathematical space, the
space of meanings of programs. The semantics of the programming language
is then defined by a function, the semantic function D[[]] which maps a
program to an element of the mathematical space.

Consider the simple programming language defined in Table 1 . We have
a set of variables Var, x, y, z, etc., and values Val, the integers. An expression
is either a variable, or an arithmetic or boolean expression. A statement is an
assignment x=e of an expression e to a variable x, or a squential composition
S1; S2.

What should the mathematical space be. First, we must consider how to
model the heap. The heap assigns a value to every valuable, so it is natural to
see it as a member of the space Heap of functions from Var to Val. Now how
do we model an expression? We must be given a heap in order to determine
the value of the variables in the expression. The evaluation of the expression
should return a Val. Hence we can think of the denotation of an expression to
be a function from Heap to Val. The definition is now clear: E [[x]](h) = h(x),
and E [[e1 + e2]] = E [[e1]]+E [[e2]], where + represents the addition operation on
integers.

Now, what should the denotation of a statement be? It starts in a heap,
and after some steps, results in another heap. So it is natural then to think
of modeling a statement as a function from Heap to Heap. For a heap h, a
variable x and a value v, let h[x = v] stand for the heap which is the same
as h except that it takes on the value v at x. Then, clearly, the denotation
of the assignment statement x=e should be just

S[[x = e]](h) = h[x = E [[e]](h)]

That is, evaluate e in h to obtain the value v = E [[e]](h), and then the result
is the heap h[x = v].

2012 COMS W4130 PPPP - Semantics (c) IBM Page 1 of 6

(Variables) x,y,z ::= . . . variables . . .
(Values) v ::= 0 | 1 | . . . numbers . . .

(Expressions) e ::= v | x | e + e | e * e | e == e . . .
(Statements) S,T ::= x=e (Assignment)

S0;S1 (Sequencing)

Table 1: A simple imperative programming language

Now it should be clear what the denotation of sequential composition
S1; S2 is. It corresponds to first executing S1 in the input heap and then
computing S2 in the resulting heap. That is:

S[[S1;S2]](h) = S[[S2]](S[[S1]](h))

Th denotational approach sketched above has the crucial property that
the meaning of a compound phrase (e.g. S1; S2 is given in terms of the
meaning of its component phrases (e.g. S1 and S2). The approach is said to
be compositional in nature.

1 Structural operational semantics

The goal of operational semantics is to directly model the actual step-wise
execution of the program.

1.1 Basic approach

First we identify a set of configurations. A configuration is an abstract rep-
resentation of machine state. A configuration should reflect both the control
and the data aspect of the computation.

Second we identify a binary transition relation −→ on configurations. If
γ −→ γ′ we think that the machine in state γ can take a single step and
move to state γ′.

An execution sequence is a sequence γ0, γ1, γ2, . . . such that for each i,
γi −→ γi+1. The root of such a sequence is γ0. We also say that γ0 has the
execution sequence γ0, γ1, γ2, . . .

We say that a configuration γ diverges if it has an infinite execution
sequence. A divergent sequence represents a non-terminating execution.

We say that a configuration γ is stuck if there is no configuration γ′ such
that γ −→ γ′. Sometimes we will write γ 6−→ to indicate that. A maximal
execution sequence is a finite execution sequence whose last configuration is
stuck.

2012 COMS W4130 PPPP - Semantics (c) IBM Page 2 of 6

A stuck configuration may represent a terminated computation or an error
(e.g. a deadlocked computation). We identify a subset of stuck configurations
as terminal. These represent the properly terminated computations. The
states that are stuck but not terminal represent “bad” states – typically
states the programmer did not intend for his/her program to get into. A
(finite) execution sequence is terminal if its last configuration is terminal.

Definition 1.1 (Transition System) A transition system is a triple

〈Γ, T,→〉

such that Γ is a set (of configurations), T ⊆ Γ is the subset of terminal con-
figurations and −→⊆ Γ×Γ is a binary relation on Γ satisfying the condition
that for every γ ∈ T there is no γ′ such that γ −→ γ′.

A terminating execution sequence from γ is an execution sequence γ =
γ0, γ1, . . . , γn such that for all γi −→ γi+1 for all i < n, and γn is terminal.

The result of a configuration γ0 is the set of all terminal configurations γ
such that γ0 has an execution sequence terminating in γ.

1.2 Semantics of expression evaluation

First we identify a set of values. For simplicity we shall take Val, the set of
values, to be Int, the set of all integers. We also assume a pre-defined set of
variables, Var. By a heap σ we mean a function from Var to Val.

Next we identify a set of expressions. An expression is either a value, a
variable or a sum or product or an equality. (We shall assume equality returns
0 if the condition is true and 1 if it is false.) Other primitive operations can
be dealt with in the same fashion.

We choose the space of configurations to be pairs 〈e, σ〉 or singletons v.
The first represents an expression e that is intended to be evaluated in a heap
σ and the second represents the result of the execution. We take the set of
terminal configuration to be the singletons v.

We now provide a simple evaluator for expressions. This evaluator eval-
uates expressions from left to right and yields a value. Below we use “op” to
stand for any of the binary operations +, ∗ or ==.

σ(x) = v
〈x, σ〉 −→ v

〈e0, σ〉 −→ 〈e′0, σ′〉 | v
〈e0 op e1, σ〉 −→ 〈e′0 op e1, σ′〉 | 〈v op e1, σ′〉

〈e, σ〉 −→ 〈e′, σ′〉 | w (u = v op w)
〈v op e, σ′〉 −→ 〈v op e′, σ′〉 | u

2012 COMS W4130 PPPP - Semantics (c) IBM Page 3 of 6

(Variables) x,y,z ::= . . . variables . . .
(Values) v ::= 0 | 1 | . . . numbers . . .

(Expressions) e ::= v | x | e + e | e * e | e == e . . .
(Statements) S,T ::= x=e (Assignment)

if (c){S0}else{S1} (Conditional)
S0;S1 (Sequencing)
atomic S (Atomic)
when(e){S} (When)
async S (Async)
finish S (Finish)

Table 2: L0 with concurrency constructs

The rules encode a left-to-right evaluation strategy because it is not possible
to evaluate the right subexpression of an expression unless the left subex-
pression has already been evaluated to a value.

Exercise 1.1 (No deadlock, no divergence) Establish that given any ex-
pression e and heap σ such that all the variables in e are defined in σ, all
maximal transition sequences starting from s end in a terminal configuration.
Thus, there are no stuck configurations. (Hint: use structural induction.)

Exercise 1.2 (Determinacy) Establish that given a configuration γ = 〈e, σ〉
if γ −→ γ′ and γ −→ γ′ then γ = γ′. (Hint: The rules encode a left-to-right
evaluation strategy.)

That is, for any expression and heap, there is a unique transition sequence
evaluating that expression into a value.

Semantics We associate with a statement S and an initial heap σ the heap
σ′ such that 〈S, σ〉 −→∗ σ′. From the above propositions, there are no stuck
configurations, and given a 〈S, σ〉, the terminal configuration σ′ defined as
above is unique.

1.3 Semantics of statements

Statements are built up from assignments, sequential composition, and con-
ditionals using the familiar concurrency primitives (Table 3).

The transition relation for statements is given in Table 3.

2012 COMS W4130 PPPP - Semantics (c) IBM Page 4 of 6

e −→σ v
〈x = e, σ〉 −→ σ[x 7→ v]

〈S0, σ〉 −→ 〈S ′0, σ′〉 | σ′
〈S0;S1, σ〉 −→ 〈S ′0;S1, σ

′〉 | 〈S1, σ
′〉

〈S, σ〉 −→ 〈S ′, σ′〉 | σ′
〈async S, σ〉 −→ 〈async S ′, σ′〉 | σ′

〈S1, σ〉 −→ 〈S ′1, σ′〉 | σ′
〈async S0;S1, σ〉 −→ 〈async S0;S

′
1, σ

′〉 | 〈async S0, σ
′〉

〈S, σ〉 −→ 〈S ′, σ′〉 | σ′
〈finish S, σ〉 −→ 〈finish S ′, σ′〉 | σ′

〈S, σ〉 −→∗ σ′
〈atomic S, σ〉 −→ σ′

c −→∗σ 0 〈S, σ〉 −→∗ σ′
〈when(c){S}, σ〉 −→ σ′

〈e, σ〉 −→ 〈e′, σ′〉 | 0 | 1
〈if(e){S0}else{S1}, σ〉 −→ 〈if(e′){S0}else{S1}, σ′〉 | 〈S0, σ

′〉 | 〈S1, σ
′〉

Table 3: Rules defining transition relation for statements

2012 COMS W4130 PPPP - Semantics (c) IBM Page 5 of 6

Exercise 1.3 Show that there are statements which have multiple terminat-
ing exection sequences with different terminal configurations.

This shows that statements may have indeterminate execution.

Exercise 1.4 Show that there are maximal execution sequences in which the
final configuration is not terminal.

This shows that statement execution may deadlock.

Exercise 1.5 Show that if a statement has no subexpression of the form
when(c){S} then all its maximal execution sequences are terminating.

Thus, when(c){S} is the only construct that can cause a deadlock.

1.4 Statically sequential programs

A program is sequential if it does not contain atomic, when, async or finish
constructs.

Exercise 1.6 Establish that sequential statements have single maximal exe-
cution sequences which terminate in a terminal configuration.

2012 COMS W4130 PPPP - Semantics (c) IBM Page 6 of 6

