B W N -

B W N -

Blocking Synchronization: Streams
Vijay Saraswat
(Dec 10, 2012)

1 Streams

Streams provide a very simple abstraction for determinate parallel computation.

The intuition for streams is already present in the Unix “pipes” abstraction.
Imagine a graph, with sequential code running at each vertex, and with “pipes”
corresponding to its edges. A pipe transmits a (potentially infinite) sequence of
values from source to destination, i.e. it can be thought of as a point-to-point,
loss-less, order-preserving communication channel. The sequential code at a
vertex can perform a read operations on incoming pipes, and write operations
on outgoing pipes. We shall also permit the code to close an outgoing pipe.

For now we consider each pipe to have unbounded capacity. This means
that the producer for the pipe (the sequential code running at the vertex that
is the source of the pipe) may run arbitrarily far ahead of the consumer for the
pipe (the sequential code running at the vertex that is the sink of the pipe).

A read operation retrieves the next value from the pipe, blocking until such
time as there is a value, or the stream has been closed. (If the stream is closed
then the operation will throw a StreamClosedException.)

A write operation simply appends the item to the end of the pipe.

The basic abstractions can be specified thus. In the code segments that
follow, we have removed various comments and log statements. The actual
code may be found in the repository.

A Stream[T] is a stream of values of type T, and it permits a user to get the

elements of the stream, waiting until it has one. It throws a StreamClosedException

if the stream has been closed.

public interface Stream[T] {

operator this ():T;

}

A Source[T] is a handle to a stream that can be used to push elements on
to the stream, and to close the stream.

public interface Source[T] {
operator this()=(t:T):void;
def close ():void;

A Spring[T] is just a Stream[T] or a Source[T].

public interface Spring|[T] extends Stream[T], Source[T] {}

public class StreamClosedException(s:Any) extends Exception {}

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 1 of 10

S U W N

0O~ O U W

1.1 Implementation of streams
Now let us consider an implementation of Stream.
1.1.1 Monitor

First we start with the implementation of a monitor abstraction. We show how
to work wround the limitation of the current current X10 implementation of
atomic and when (they use a single place-global lock and hence limit concur-
rency). We directly use Lock to implement an atomic block abstraction.

A monitor may be used to ensure atomic execution of conditional code blocks
by multiple activities executing simultaneously. There may be multiple monitors
in a given place, and they can be operated on simultaneously with no interference
across monitors. It is the responsibility of the programmer to determine which
activity should use which monitor.

The code is structured along familiar lines. A lock is used to guard operations
on monitor. Since a conditional atomic operation may suspend, a suspension
mechanism is maintained internally. The field threads keeps a list of suspended
threads, there can be at most MAX_THREADS of these.

public class Monitor {
protected val lock = new Lock ();
protected val threads =
new Rail [Worker](x10.lang.Runtime .MAX THREADS);
protected var size:Int = O0;

Note that the Lock () operation increases and decreases parallelism explicitly.
This is because the lock.lock() call may suspend, blocking the current worker,
and preventing it from executing other asyncs. The call increaseParallelism()
permits the run-time to create another thread (or activate a frozen threads) so
that a thread is available to take the place of the thread that is about to be
suspended on the lock. On return from the call lock.lock(), the invocation
of decreaseParallelism() ensures that if the worker pool has more workers
than it nominally should have, one of the idle workers is frozen.

protected def lock () {
if (! lock.tryLock()) {
Runtime. increaseParallelism ();
lock .lock ();
Runtime. decreaseParallelism (1);

}

protected def unlock() { lock.unlock();}

The routine on[T] (cond: ()=>Boolean, action: ()=>T) :Tis the work horse
for the monitor. An activity executing this method will block until such time
as cond() evaluates to true. It will then execute action(). cond should be
side-effect free; it may be evaluated an unknown number of times. However,
action() will be evaluated only once. The last execution of cond() and the
execution of action() are guaranteed to be done in a single step wtih respect
to any other on operations on this monitor.

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 2 of 10

1 public def on[T](cond:()=>Boolean, action:()=>T):T {
2 try {

3 lock ();

4 while (!cond()) {

5 val thisWorker = Runtime.worker ();
6 val s = size;

7 threads (size++)=thisWorker;

8 while (threads (s)==thisWorker) {

9 unlock ();

10 Worker . park ();

11 lock ();

12

13

14 val result=action ();

15 val m=size; // now awaken all suspended workers
16 for (var i:Int = 0; i<m; ++i) {

17 size ——;

18 threads (size).unpark ();

19 threads(size)=null;

20 }

21 return result;

22 } finally {

23 unlock ();

Using this operation many convenient operations can be defined. awaken ()

will awaken all workers, if any, waiting on this monitor.

static val TRUE = ()=>true;
static val NOTHING = ()=>Unit ();

public def awaken() { on(TRUE, NOTHING);

S U W N

1.1.2 Bounded buffer

Using Monitor one can build a bounded buffer.

public def await(cond:()=>Boolean) { on(cond, NOTHING);

public def atomicBlock[T](action:()=>T):T =on(TRUE, action);

1 | package pppp.util;

2 |import x10.compiler.NonEscaping;

3 |import pppp.util.Logger;

4 | public class BBuffer [T](N:Int) {

5 protected val data:Rail [T];

6 protected var nextVal:Int=0;

7 protected var size:Int=0;

8 protected val monitor = new Monitor ();
9 protected var name: String;

10

11 public def this(N:Int){T haszero }{
12 this (N, Zero.get [T]());

13

14 public def this(N:Int, t:T) {

15 property (N);

16 data = new Rail [T](N, t);

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM

Page 3 of 10

— O OO0 Utk WK+~

—_ =

0O Uk WN

= O ©OoO0 Utk Wk~

==

...} I

Adding an element to the buffer is done as follows. One defines a condition
that checks for space, and an operation that adds to the buffer.

protected def hasSpace ():Boolean = size < N;
protected def add(t:T):Unit {

var nextSlot:Int = nextValtsize;

if (nextSlot >= N) nextSlot %=N;

data (nextSlot)=t;

size+4+;

return Unit ();

public operator this()=(t:T):void{
, monitor.on[Unit](()=> hasSpace(),()=>add(t));

Dually, one defines the operation for getting a value from the buffer using
a condition that checks that there is a value, and an operation that actually
removes the value.

protected def awaken() { monitor.awaken(); }
protected def hasValue ():Boolean = size > 0;
protected def get ():T {

val result = data(nextVal);

if (++nextVal >= N) nextVal %= N;
size ——;

return result;

}

public operator this():T = {
val t = monitor.on(()=> hasValue(), ()=>get ());
t

}

1.1.3 Stream implementation

Finally we can define an implementation of Spring[T]. The close() operation
schedules an atomic block that unconditionally sets closed to be true. Adding
an element to the stream and obtaining an element from the stream is done
by using the inherited apply and assignment operators. The key is that the
hasSpace() and hasValue() conditions are over-ridden to check whether the
stream is closed.

public class BoundedStreamImp [T] extends BBuffer [T]
implements Spring [T]{
public static val DEFAULT_SIZE=2000;
protected var closed:Boolean=false;
public def this(){T haszero}{
this (null, DEFAULT.SIZE, Zero.get [T]());

public def this(s:String){T haszero }{
this (s, DEFAULTSIZE, Zero.get [T]());

}

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 4 of 10

12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30

S U W N

© 00 O Ut WN

R e e e e S S
SO OO Ui WN O

public def this(s:String, N:Int, zero:T) {
super (N, zero);
this.setName(s);

}

public def close ():void {
monitor. atomicBlock(()=>{closed=true; Unit()});

public def isOpen ():Boolean = ! (closed && size==0);

protected def hasSpace ():Boolean {
if (closed) throw new StreamClosedException(this);
return super. hasSpace ();

protected def hasValue ():Boolean {
if (! isOpen()) throw new StreamClosedException (this);
return super.hasValue ();

}

}

2 Operators on streams

We can now define different kinds of operators on streams.
ConstraintSTream produces an infinite stream containing a pre-specified
element.

public class ConstantStream [T| implements Stream [T] {
val k:T;
public def this(k:T){this.k=k;}
public operator this():T =k;
public def toString()= ”<ConstantStream.” + k + ”>7;

Now we consider the FBy (“followed by”) stream. It takes as input a stream
o and prefixes a given rail of elements before it.

public class FBy[T](a:Rail[T],b:Stream[T])
implements Stream [T]{
public def this(a:T) { this(new Rail [T](1,a));}
public def this(a:Rail[T]){ this(a,null as Stream[T]);}

public def this(x:IntRange){T=Int }{
this (new Rail [Int](x.max—x.min+1, (i:Int)=>x.min+i));
}

public def this(a:Rail[T], b:Stream [T]){
property(a, b);

}

public def this(x:T,b:Stream[T]) {
this (new Rail [T](1,x),b);

}

var i:Int=0;
public operator this ():T= {
if (i < a.size) {
val item = a(i++);

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 5 of 10

21
22
23
24
25
26

28
29
30
31

© 00 O Ut WN -

Tk W N~

O~ O U W

== e
[V SR e N}

return item;

}

if (b !=null) {
val item = b();
return item;

}

throw new StreamClosedException (this);

@NonEscaping
public final def toString()= "<” + a +
(b:null TN LY S 4+ b) 4 7>

A FilteredStream removes all elements fromt he input stream taht satisfy
the given condition.

public class FilteredStream [T](f:(T)=>Boolean, aS:Stream[T])
implements Stream [T] {
public operator this():T {
var a:T=aS ()
while (! f(x
return a;

)) a=aS(); // may throw StreamClosedExzception

public def toString()="<” + aS + ”_filteredBy.” + f +">7;

}

An OpStreaml applies a unary function on the input stream:

public class OpStreaml[S,T](f:(S)=>T, aS:Stream|[S])
implements Stream [T] {
public operator this():T =f(aS())

public def toString()="<” + f + 7(” 4+ aS + ”)>";

}

Similarly one can define OpStream?.

The class XDucer provides certain useful transducers on streams. A trans-
ducer takes as input one or more streams and produces as output zero or more
streams.

The copy transducer copies elements from the input stream to each one of
a given rail of streams:

public static def copy[T,X](source:Stream[T], sinks:Rail[X])
{X <: Source[T]}{

async
try {
while (true) {
val x = source ();
for (o in sinks.values()) o()=x;
}
} catch (z: StreamClosedException) {
} finally {

for (o in sinks.values()) o.close ();

}

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 6 of 10

0O~ O U W

O I e e e e R R e i
—H O OO0 Uk WO ©

0O~ O Ui W

[I N N N R N R R e e i e R e i
T W R O OO0 Uk WD - OO

The print transducer prints out the given stream, k elements at a time, on
the given Printer.

public static def print [T](ix:Stream[T]):void {
print (Console .OUT, ix, 10);

public static def print [T]
print (Console .OUT, ix, k

)

(ix:Stream [T], k:Int):void {
)

public static def print[T](p:Printer ,ix:Stream[T],k:Int):void {
async {
try {
var n:Int=0;
while (true) {

n++;
if (n % k = 0) p.println (ix ());
else p.print (ix() + 7.7);

} catch (z: StreamClosedException) {
Logger.log(” print._catches_exception._Terminates.”);

p.println ();

}

}

3 Examples of stream programs

3.1 Twice

Here is a simple program that takes as input a stream of integers, and doubles
it. It explicitly constructs a codeBoundedStreamImp.

public class SimpleStreamExample {
public static def main(s:Rail[String]) {
val N = s.size > 0 7 Int.parselnt(s(0)) : 100;

val time = System.nanoTime ();
finish {

XDucer. print (twice (gen(N)), 10);
}

Logger.info(()=>”Time: .”
+ ((System.nanoTime()—time)*1.0)/(1000%1000%1000)
+ 77,_48,”);
}

static def gen(N:Int):Stream[Int] = new FBy[Int](2..N);
static def twice (nums:Stream[Int]): Stream[Int] {
val s = new BoundedStreamImp [Int]();
async {
try {
while (true) {
val item = nums();
s()=2x*item;

} catch (StreamClosedException) {
s.close ();
}

}

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 7 of 10

26
27
28

0O Utk WN

return s;

}
}

The same program can be written using an OpStreaml instance.

static def twice(aS:Stream[Int]): Stream[Int]
=new OpStreaml ((x:Int)=>2%x,aS);

3.2 Hamming

The Hamming sequence is an ordered sequence containing precisely the numbers
27 x 37 x 5% for 4,5,k > 0. Thus the sequence starts out as

1234568910 ... I

This code can be written in a simple fashion, recognizing that the stream
can be defined recursively.

public class Hamming {
static def omerge(n_:Int, aS:Stream[Int],
bS:Stream [Int]): Stream [Int] {

val s = new BoundedStreamImp [Int](” omerge(” + aS
+ 7,7 4+ bS+)7);

async {
var a:Int=aS(), b:Int=bS();
try {

var n:Int=n_;
while (n— >0) {
val item = Utils.min(a,b);
s()=item; // output before consuming
if (a==item) a=aS();
if (b==item) b=bS();

} catch (StreamClosedException) {
} finally {

s.close ();}
}

return s;

}

static def kmult(k:Int, aS:Stream|[Int]):Stream[Int] =
new OpStreaml|[Int,Int]((x:Int)=>x*xk, aS);

static def hamming(n:Int):Stream[Int] {

val hx:Rail[Spring[Int]] =

new Rail [Spring[Int]](4, (i:Int)=>

new BoundedStreamImp [Int | (” _hamming(” + i+7)”));

XDucer . copy (new FBy[Int](1,

omerge (n—1, kmult(2,hx(0)),

omerge (n—1, kmult(3,hx (1)),
kmult (5,hx(2))))),

hx);

return hx(3);

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 8 of 10

38
39
40
41
42
43
44
45
46
47
48
49

OO U W

WWWNNNNNNNDNNNDNNR R R 2R
N O OO UkRWNHF OO Uk W~ OO

public static def main(args:Array[String](1)) {
if (args.size < 1) {
Console .ERR. print (” Usage : -Hamming <N>\n") ;
return;
}
finish {
Logger.log(()=> ”Starting _hamming.”);
XDucer. print (hamming (Int . parselnt (args (0))));

Console .OUT. println (” ... done.”);

}
}

3.2.1 The Sieve of Eratosthenes

The Sieve of Eratosthenes is a way of generating the sequence of prime numbers.
It takes as input a stream of increasing numbers. It declares the first number
it sees as a prime, and then filters out (from the remainder of the stream) all
numbers that are multiples of this number, and then passes this resulting stream
into another recursive instance of itself. Thus it (lazily) sets up a cascading chain
of filters, one for each prime.

The initial input to the sieve is the sequence of integers starting from 2.

public class Sieve {
public static def main(s:Rail[String]) {
val N = s.size > 0 7 Int.parselnt(s(0)) : 100;

val time = System.nanoTime ();
finish {

XDucer. print (primes(gen(N)), 10);
}

Console .OUT. println (? Time: .”
+ ((System.nanoTime()—time)*1.0)/(1000%1000%1000)

+ ”HS .”);
}
static def gen(N:Int):Stream|[Int] = new FBy[Int](2..N);
static def primes(nums:Stream|[Int]):Stream[Int] {

try {
val prime = nums();
val s = new FByPush[Int](prime, ()=> primes(sieve (prime, nums)

”prime(” + primeJr”)”),
s.run ();
return s;

} catch (z: StreamClosedException) {
Logger.debug(()=>”Primes(” + nums + ”)._throws_exception.”);
throw z;

}

}

static def sieve(prime:Int, nums:Stream[Int]): Stream[Int] {
val s = new BoundedStreamImp[Int]();
async {
Logger.log(()=> ” Starting.sieve(” + prime + ”)”);
try {
while (true) {

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 9 of 10

TUk W N~

val item = nums();
if (item % prime != 0) s()=item;

} catch (StreamClosedException) {
s.close ();

}

return s;

}
}

Exercise 3.1 Can sieve be written using one of the operations on streams we
have defined earlier?

4 Kahn networks

Kahn networks are model of concurrent computation obtained by connecting
sequential agents through Unix-style first-in first-out pipes [Kah74].

A Kahn networks consists of a collection of nodes connected to other nodes
through streams. Each node is associated with an agent. The agent can read
one or more values from one or more sinks, perform an arbitrary sequential
computation and write one or more values on one or more sources.

Typically agents have bounded state. If an agent must operate on unbounded
state it may dynamically spawn a whole new subnetwork at any time. That is,
Kahn networks are not static. Indeed, a Kahn network may grow unboundedly
over time.

The key restriction in Kahn networks is that an agent is sequential — it may
do only one thing at a time. In particular, if it is waiting for input to arrive
on a particular sink, it cannot simultaneously be waiting for input to arrive on
another stream. That is one cannot program a parallel or function:

Vit

Send true on the output as soon as true arrives on either sink,
without waiting for a wvalue to arrive on the other sink.

*/

def por(a:Sink[Boolean], b:Sink[Boolean]: Sink[Boolean];

The fundamental result in Kahn’s seminal paper is that Kahn networks are
determinate. Each agent can be modeled as a function from the sequence of
input streams to the sequence of output streams.

References

[Kah74] Gilles Kahn. The Semantics of Simple Language for Parallel Program-
ming. In IFIP Congress, pages 471-475, 1974.

2009 COMS W4995-1 PPPP - Lec 4 (c) IBM Page 10 of 10

