
Unit: Blocking Synchronization
Clocks, v0.3

Vijay Saraswat

This lecture discusses X10 clocks. For reference material please look at the
chapter on Clocks in [].

1 Motivation

The central idea underlying clocks is that of phased computations.

1. Consider red/black iterations, e.g. to implement stencil computations.
Each iteration may be considered a (determinate) phase. In each phase a
well-defined set of locations is read and written (determinately) by con-
current activities. The end of a phase is detected by termination of these
activities. In the next phase, a new set of activities are created.

Typically in a phase information produced in the previous phase is read.

2. Consider streaming computations. A stream is a sequence of values. A
stream is produced by a source and consumed by a sink. The values
produced by the source are consumed by the sink in FIFO (First-In First-
Out) order. A computing node typically has one or more incoming streams
(that it reads from), and one or more outgoing streams (that it writes into).

A stream may have finite capacity, e.g. it may hold only two values (e.g. in
a circular buffer). In each phase, the producer can write a value, and the
consumer can read (the previous) value. Thus computation can progress
indefinitely in (determinate) phases.

2 Definition

Clocks in X10 are instances of the class x10.lang.Clock. While clocks may
be created explicitly and managed by user code, there are several restrictions
on their usage. Hence X10 supports some constructs that implicitly use clocks,
there are few restrictions on these constructs.

A finish S statement may optionally be prefixed by clock: such a state-
ment is called (naturally enough!) a clocked finish statement. It is associated
with an (anonymous) clock. Execution of a clocked async S construct in the
dynamic scope of such a finish registers the generated activity with the implicit
clock. A clocked async A must occur (dynamically) nested in a clocked

async or clocked finish. If it is enclosed in an unclocked async (which does
not itself enclose the controlling clocked finish for A), a runtime exception
is thrown.

A clocked async may invoke a Clock.advanceAll() method. This method
call returns only when all activities registered on the implicit clock have them-
selves invoked Clock.advanceAll(). At thi point, we say that the clock can ad-
vance its phase: on advancing, it releases all asyncs waiting in their Clock.advanceAll()
call, and these calls return. Thus clocks can be used to get barrier functionality:
the barrier is raised only when all activities registered on it have arrived at it.
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An important detail: The activity executing clocked finish S is automat-
ically registered on the implicit clock created when S is executed. The activity
is implicitly deregistered from this clock when S locally terminates. (Note: ter-
mination of S, as usual, does not require that all activities spawned by S have
terminated.)

Example 2.1 Conside the following simple code:

1 var x : In t =0, y : In t =0;
2 c l o c k e d f i n i s h {
3 c l o c k e d async {
4 x=1;
5 Clock . advanceAl l ( ) ;
6 Console .OUT. p r i n t l n ( ”y=” + y ) ; // must p r i n t 1
7 }
8 c l o c k e d async {
9 y=1;

10 Clock . advanceAl l ( ) ;
11 Console .OUT. p r i n t l n ( ”x=” + x ) ; // must p r i n t 1
12 }
13 }

Exercise 2.1 Work out how to translate finish S into a piece of code that
does not use finish but uses clocks instead. Note that S may recursively contain
finish S1 statements.

For simplicity, assume that S may not itself contain clocked operations.

Whenever you write code in which a finish ... async... pattern is used
within a loop you should consider rewriting the code to use clocks. The basic
idea is to spawn activities only once, outside the loop, and use a next operation
in the body of the activity to signal completion of the phase. That is, translate:

1 for (p in R)
2 f i n i s h
3 for ( q in S)
4 async
5 S // p and q may occur here

into

1 c locked f i n i s h
2 for ( q in S)
3 c locked async
4 for (p in R) {
5 S ; // p and q may occur here
6 Clock . advanceAll ( ) ;
7 }

2.1 Determinacy

The clock operations do not introduce any indeterminacy – that is, there is no
race condition involved in their operation.
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The operation of a clock can be modeled by considering a clock to be associ-
ated with two counters N (the number of activities registered with the clock in the
current phase), and Q (the number of activities that have entired a advanceAll

call in the current phase). (One may optionally keep track of the current phase,
an Int or Long, this is incremented each time the barrier is lifted.)

When a clocked finish is spawend, a new clock is created, and associated
with the count (1,0), since the current activity is automatically registered with
the clock, and no activity has quiesced yet.

When an activity enters advanceAll(), the count makes a transition from
(N,Q) to (N,Q+1). Note that for this to happen it must be the case that N >

Q – this call can only be made legally (i.e. without an exception being thrown)
by a clocked async that is not already in the middle of a advanceAll() call.

N > Q,N > 0

(N,Q) −→ (N,Q + 1)

When a clocked async is spawned the counts associated with the finish

transition from (N,Q) to (N+1,Q). GIven the restriction above (a clocked

async can be spawned only by another clocked async or the activity that
created the clocked finish), it is clear that this step can only happen if the
condition N > 0 is true.

N > Q,N > 0

(N,Q) −→ (N + 1, Q)

When a clocked async terminates, the counts transition from (N,Q) to
(N-1,Q).

N > Q,N > 0

(N,Q) −→ (N − 1, Q)

When the activity that launched the clocked finish S finishes executing
S, the counts transition from (N,Q) to (N-1,Q).

N > Q,N > 0

(N,Q) −→ (N − 1, Q)

Given these operations on the clock, the condition N==Q is stable – none of
these transitions can occur. Note that in this state no assertion can be made
about the value of N, e.g. it may be zero.

Exercise 2.2 Write a small snippet of code that shows how the state (0,0) can
be reached.

Exercise 2.3 For every N > 0 sketch out a snippet of code that could cause the
clock to reach the state (N,N).

Once this state is reached, the clock detects the barrier is reached, increments
the phase counter, and changes the count from (N,Q) to (N, 0), since it has
released all the clocked asyncs from the barrier.
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Because the condition N == Q is stable for the clock, clock operations are
determinate. There is no race condition between an activity trying to register
itself on the clock, and the clock wanting to make a phase transition.

Note that multiple activities registered on the clock are racing in their op-
erations: they are simultaneously mutating the state of the clock in ways that
are not locally commutable. However, the key point is that no activity is able
to actually read the values of N and Q – they can only detect when N == Q.

2.1.1 Application level determinacy

Can applications can make use of clocks to be determinate?
Yes! Suppose a location needs to be written and read by multiple concurrent

asyncs. Now arrange for it to be the case that the readers and writers are reg-
istered on the same clock. Ensure that in a given phase at most one async will
write into the location. Hence there will be no write-write conflicts. Further, en-
sure that in a given phase activities only read that location or write the location.
This ensures that there are no read/write conflicts. Thus clocks help the pro-
grammer to segregate operations on controlled locations into non-overlapping
phases.

If you combine this idea with the red/black idea, you can get a notion of
clocked data structures that can be safely (determinately) read and written in
each cycle. The read will return the value of the location that was last written
into this location – before the current phase. The value (if any) written in the
current phase will be visible only in subsequent phases. Hence there are no
read/write conflicts.

2.2 Deadlock-freedom

Code using the implicit clock cannot introduce deadlocks. Why?
First let us see that just clock operations cannot introduce a deadlock. Note

that starting any state in which N 6= Q there are a sequence of possible tran-
sitions that take the clock to N == Q. So the system can never be “stuck” in
an N 6= Q state.

Finally we have ensured that there are no bad interactions between the
finish construct and clocks by ensuring that when the activity that is executing
clocked finish S finishes executing S it drops the clock.

3 Examples

3.1 Red black computations using clocks

Here is a version of AllReduce that uses a clock. P activites are spawned
once and for all, and the activities use next to move from one phase of the
computation to the next.

1 public class ClockedAllReduce {
2 stat ic de f even (p : int ) : Boolean = p % 2 == 0 ;
3 public stat ic de f a l lReduce ( red : DistArray [ int ] ( 1 ) ,
4 b lack : DistArray [ int ] ( 1 ) ) {
5 va l P = Place .MAX PLACES;
6 va l phases = Ut i l s . l og2 (P) ;
7 c locked f i n i s h {
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8 for ( [ p ] in red ) at ( red . d i s t (p ) ) c locked async {
9 var s h i f t : Int =1;

10 for ( phase in 0 . . ( phases −1)) {
11 va l ev = even ( phase ) ;
12 va l de s t Id = (p+s h i f t )% P;
13 va l source = here ;
14 va l elem = ev ? black (p) : red (p ) ;
15 at ( Place ( des t Id ) ) {
16 i f ( ev )
17 red ( des t Id ) = elem + black ( des t Id ) ;
18 else
19 black ( des t Id ) = elem + red ( des t Id ) ;
20 }
21 s h i f t ∗=2;
22 Clock . advanceAll ( ) ;
23 }
24 }
25 }
26 return ( even ( phases −1)) ? red (0 ) : b lack ( 0 ) ;
27 }
28 public stat ic de f main ( Rai l [ S t r ing ] ) {
29 a s s e r t U t i l s . powerOf2 ( Place .MAX PLACES)
30 : ” Must run on power o f 2 p l a c e s . ” ;
31 va l D = Dist . makeUnique ( ) ;
32 va l b lack = DistArray .make [ int ] (D, (p : Point)=> p ( 0 ) ) ;
33 va l red = DistArray .make [ int ] (D, ( Point)=> 0 ) ;
34 va l r e s u l t = al lReduce ( red , b lack ) ;
35 Console .OUT. p r i n t l n ( ” a l lReduce = ” + r e s u l t ) ;
36 }
37 }

3.2 Streaming through single memory locations

Below, we use the @shared annotation on mutable variables. A shared variable
is permitted to be accessed from within spawned asyncs. It may be used for
communication between spawned asyncs, or with the parent activity.

What does the following program do?

1 public class ClockTest {
2 stat ic de f run ( ) {
3 va l x=new Ce l l [ Int ] ( 1 ) , y= new Ce l l [ Int ] ( 1 ) ;
4 c locked f i n i s h {
5 c locked async
6 while ( true ) {
7 va l r = x ( ) ;
8 Clock . advanceAll ( ) ;
9 y()= r ;

10 Console .OUT. p r i n t l n ( ”y=”+ y ) ;
11 Clock . advanceAll ( ) ;
12 }
13 while ( true ) {
14 va l s = x()+y ( ) ;
15 Clock . advanceAll ( ) ;
16 x ( ) = s ;
17 Console .OUT. p r i n t l n ( ”x=”+ x ) ;
18 Clock . advanceAll ( ) ;
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19 }
20 }
21 }
22 public stat ic de f main ( Rai l [ S t r ing ] ) {
23 run ( ) ;
24 }
25 }

It uses two shared mutable variables x and y (each initialized to 1). It
launches two clocked activities. The first reads x in one phase and passes the
read value to y in the next phase. That is it implements the recurrence

yi+1 = xi

The second implements the recurrence

xi+1 = xi + yi

Hence the sequence of writes to the two locations are:

x : 1, 2, 3, 5, 8, 13, 21, ...
y : 1, 1, 2, 3, 5, 8, 13, ...

That is, this program is computing the Fibonacci sequence!
Note that the timing of the writes is crucial for the correctness of this pro-

gram. Computation progresses indefinitely in a succession of phases. In odd
phases the current values of x and y are read by the two activities. In even
phases the first activity writes a new value of y and the second the new value
of x. Thus there is no read/write or write/write conflict.

Exercise 3.1 Consider the program above, with all Clock.advanceAll() calls
removed. What can you say about the results that could possibly be printed out?

Exercise 3.2 Write a program for computing the following recurrence

A(i, j) = avg(A(i− 1, j), A(i− 1, j − 1), A(i, j − 1))

assume given boundary conditions (leftmost column, topmost row is indepen-
dently determined).

3.3 Using clocks explicitly

Clocks can be created explicitly by user code, by invoking Clock.make(). The
activity creating a clock is said to be registered to the clock. An activity may
be registered on multiple clocks.

An activity registered on a clock c may choose to register activities that it
is spawning on c. It does that using a clocked(c) clause. This clause may be
specified for other async creating constructs such as foreach and ateach as
well. An async created using a clocked(c1,..., cn) clause is registered on
all these clocks.

Once an activity clocked on a clock c has finished performing the actions
associated with the current clock phase, it executes a c.advance() operation.
This operation does two things:
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1. It signals to the clock that this activity has reached the end of the current
phase.

2. It waits for the clock to progress.

A clock progresses only when all activities registered on the clock have sig-
nalled that they have reached the end of the current phase.

At any time an activity can declare that it does not wish to participate
in the phases associated with the clock by dropping the clock c.drop(). The
activity is said to have deregistered from the clock. On termination, an activity
automatically deregisters from all the clocks it is registered on.

X10 also supports split-phase operations on clocks. An activity may execute
a c.resume() operation. This signals to the clock that the activity has reached
the end of the current phase; but the activity does not wait for the clock to
progress. Thus the activity may continue executing other code that is not to be
considered part of this phase. We say that the activity has become quiescent
on c. While it is quiescent, it may not drop c and may not transmit it to new
activities (the Live Clocks Condition, LCC). It becomes live again by executing
c.advance(). This advance operation does not return until the clock has pro-
gressed to the next phase. Note that the clock may already have moved to the
next phase, hence the advance operation may return immediately.

Clocks may be passed as arguments to method invocations, returned from
methods, stored in local variables or object fields – there are no restrictions.
However, there is no operation provided in the language to permit an activity
to register itself on a clock that it reads from a variable: the only way that
an activity can register on a clock is by creating the clock or being created
by an activity that is already registered on the clock. We say that clocks are
transmitted only through the spawn-tree.

Thus clocks may be thought of as implementing the idea of barriers – an
activity executing c.advance() is said to have reached the barrier, and cannot
progress until all other activities registered on c have reached that barrier. Then
they can all progress.

Semantically clocks are closely related to finish. An activity spawned dur-
ing the execution of a finish is automatically “registered” with the finish

(unless it is spawned within the context of a finish nested inside the original
finish). With clocks the programmer has the choice of specifying whether a
spawned activity should be registered on the clock or not. Finish detects the
termination of a phase by detecting that all activities spawned during the exe-
cution of its body have terminated. A clock detects the termination of a phase
by receiving explicit advance or resume signals from all activities registered on
the clock.

3.4 Restrictions

Clock usage is subject to two restrictions:

Live Clock Condition, LCC An activity that is quiescent on a clock cannot
use a clock (transmit it to a spawned async, drop it).
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Old Clock Restriction When the statement S in a finish S terminates, the
current activity must no be registered on a clock.

(Note that this condition can be established by ensuring that when an
activity enters a finish, it is not registered on a clock and during the
execution of a finish it does not create a clock.)

These restrictions are checked at runtime. If a violation is detected, a
ClockUseException is thrown. There has been work by Olivier Tardieu, Nalini
Vasudevan, and Julian Dolby to check these conditions statically [VTDE09].

3.5 Determinate advancement

LCC is necessary to ensure that clock advancement is determinate. That is,
there is no race condition between an activity getting registered on the clock,
and the clock advancing to the next phase.

To see this, notice that if at any time during execution a clock is ready to
advance, it will continue to be ready to advance until it actually advances. We
say that clock quiescence is stable [SJ05, Theorem 5]. 1 More precisely, once a
clock is ready to advance, no activity can be registered on the clock until it has
advanced. Conversely, an activity can be registered on a clock only when the
clock is not ready to advance.

Clearly, if an activity is not quiescent on a clock, the clock is not ready to
advance, and it is ok for the activity to register additional activities on the clock.
We must now establish that if a clock is ready to advance then no activity can
be registered on the clock (until the clock has advanced).

Hence all we need to do to ensure the stability property is to establish that
there is no way by which an activity can “spontaneously” be registered on a
clock. That is, there is no way by which (a) an activity that is not registered
on the clock can cause an activity to be registered on the clock , and (b) an
activity that is quiescent on the clock can cause an activity to be registered on
the clock.

Possibility (a) is ruled out because clocks are transmitted only through the
inheritance tree (see above). Possibility (b) is ruled out because of the Quies-
cence Restriction.

Thus clock advancement is determinate.

3.6 Deadlock-freedom

The Old Clock restriction is necessary for deadlock-freedom. X10 has the prop-
erty that any program written using finish, async, atomic and clocks (that
uses only Clock.advanceAll() can never deadlock. This theorem was stated
in [SJ05] and a detailed proof can be found in [LP10].

First, let us discuss how deadlock could possibly arise. To have deadlock
there must be a cycle in the wait-for graph. The wait-for graph can be defined
in many ways. For our current purposes let us define it as a graph whose nodes
are activities and whose edges a → b indicate that activities a and b are stuck

1A property is said to be stable if once it holds it continues to hold as the system evolves.

2012 COMS 4130 PPPP (c) IBM Page 8 of 11



and that for a to progress b must progress. 2 Clearly there is a deadlock in a
computation if and only if there is a cycle in this graph.

To see how wait-for graphs can be used, let us establish that an X10 program
with finish, async and atomic cannot deadlock. Clearly, an activity whose
next statement is an async is not stuck, hence it cannot be the target of a
wait-for edge. Similarly an activity whose next statement is an atomic cannot
be stuck – an atomic statement can always be executed. 3

So that brings us to a finish S. An activity A2 that has finished executing
the statement S in a finish S is indeed waiting for the activities spawned
during S to terminate. However, note that finish has a hierarchical structure:
it can wait only on the activities it has spawned to terminate. That is, if there
is a wait-for edge A1→ A2 (because A1 and A2 are executing finish statements
and waiting at the end of the statement) then it must be the case that A1 has
spawned A2. However the “A spawns B” relation is a tree – hence it can have no
cycles.

Therefore a wait-for graph cannot have a cycle involving only activities ex-
ecuting finish statements.

So a clock must be involved in order to create a deadlock.

Example 3.1 Does this program deadlock?

1 f i n i s h async { // A1
2 v a l c = Clock . make ( ) ;
3 v a l d = Clock . make ( ) ;
4 async c l o c k e d ( c , d ) { // A2
5 c . advance ( ) ;
6 d . advance ( ) ;
7 }
8 async c l o c k e d ( c , d ) { // A3
9 d . advance ( ) ;

10 n . advance ( ) ;
11 }
12 }

Indeed it does! A1 spawns two activities, each registered on the clock c and d.
It then terminates. Now A2 will peform a advance on c and A3 on d, leading
to deadlock. A2 will wait for c to advance – but to advance c requires A3 to
perform a c.advance(). However, A3 cannot do so for a symmetric reason –
it is stuck at d.advance() and needs A2 to execute d.advance() in order for d

to advance.
In brief, once A2 and A3 reach their first advance statement, the wait-for

graph contains the edges A1→ A2 and A2→ A1 — a cycle!

If only conjunctive clocks are permitted, then the above situation cannot
arise. The programmer would be forced to write:

2We are deliberately being a bit informal about these concepts, for the sake of ease of
exposition.

3Note that this is not true for a when (c) S statement. An activity executing when (c) S

is indeed stuck as long as c is not true.
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1 f i n i s h async { // A1
2 va l c = Clock .make ( ) ;
3 va l d = Clock .make ( ) ;
4 async c locked ( c , d ) { // A2
5 Clock . advanceAll ( ) ;
6 }
7 async c locked ( c , d ) { // A3
8 Clock . advanceAll ( ) ;
9 }

10 }

Now when A2 reaches advanceAll, it signals both c and d, and waits for
both of them to advance. A3 does the same. Since all clocks registered on c

have reached the barrier, c can advance. So can d. Hence both A2 and A3 can
advance.

Thus by restricting ourselves to conjunctive clocks, we can ensure that dead-
locks do not arise because some subset of activities registered on a clock c are
stuck at an advance on a different clock d, and vice versa.

So to get a deadlock we must have the case that an activity is suspended on
something other than an advanceAll. The only other construct in the language
that introduces a suspension is finish. Can finish and advanceAll combine
to produce deadlock?

Example 3.2 Consider this example:

1 // A1
2 v a l c = Clock . make ( ) ;
3 f i n i s h {
4 async c l o c k e d ( c ) { // A2
5 Clock . advanceAl l ( ) ;
6 }
7 }

The program deadlocks. When A1 has reached the end of the statement inside
the finish, and A2 is executing the advanceAll, the wait-for graph contains the
cycle A1→ A2, A2→ A1.

Here is another example illustrating deadlock:

1 // A1
2 f i n i s h {
3 v a l c = Clock . make ( ) ;
4 async c l o c k e d ( c ) { // A2
5 Clock . advanceAl l ( ) ;
6 }
7 }

These programs are ruled out by the Old Clock Restriction. The restriction
ensures that when an activity is waiting on a finish (for spawned activities to
terminate) it is not registered on any clock, hence in the wait-for graph there
can be no edge targeted at this activity. Thus this activity cannot be part of a
cycle.

A detailed proof of deadlock-freedom may be found in [LP10].
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