
Unit 7: Blocking Synchronization
Vijay Saraswat

The purpose of this unit (Lectures 21, 23 – 25) is to introduce data-dependent
blocking operations in X10.

1 Motivation

Consider situations in which multiple activities are performing mulitple oper-
ations on a shared resource. Unfortunately, some operations are conditional:
they can succeed only if the resource is in a particular state.

Example 1.1 (Bounded Buffer) Get and put operations. Get operation blocks
if there is no more data to be read. Put operation blocks if the buffer is full.

A good example of the use of bounded buffers is in streaming computations.

Example 1.2 (Asynchronous argument evaluation) (futures)

Aside Interestingly, it is rather hard to find examples of blocking synchro-
nization in the real world. For instance, human beings dont remain blocked
waiting for a particular action to happen for an indeterminate amount of time.
(This would be detrimental to survival, e.g. the organism would not be able to
respond to a higher priority, newly developing threat in the environment, a new
predator arrives.)

Rather the method used is to try, wait for failure, try again and giving up on
repeated failure (e.g. to abandon the goal, or try another way of achieving the
goal). This can be modeled perfectly well with just async, atomic and finish.

2 Conditional atomic blocks

To express such patterns directly in X10 we find it convenient to introduce a
conditional atomic block, when (c) S (where c is a boolean expression and S

is a statement). The execution of this statement blocks until such time as c is
true. Then, it executes S “instantly” (i.e. atomically with respect to all other
activities).

1 while (true) {
2 atomic
3 i f (c) {
4 S ;
5 break ;
6 }
7 }

2.1 Deadlock

Blocking leads to deadlock when multiple activities in a set are each waiting for
another in the set to progress (sometimes called a “deadly embrace”).

2012 Columbia 4130 PPPP (c) IBM Page 1 of 4

1 class Deadlock {
2 var a : Int =0;
3 var b : Int =0;
4 de f m() {
5 async {
6 when (a > 0)
7 b=1;
8 }
9 when (b > 0)

10 a=1;
11 }
12 }

3 Programming idioms

Example 3.1 (Semaphore) Here is a simple implementation of a semaphore:

1 pub l i c c l a s s Semaphore {
2 pr iva te var count : In t =0;
3 pub l i c de f t h i s (v : In t) {
4 count=v ;
5 }
6 pub l i c de f p () { // wait , a c qu i r e
7 when (count > 0) count−−;
8 }
9 pub l i c de f v () { // s i gna l , r e l e a s e

10 atomic count++;
11 }
12 }

A latch of type T is a simple data-structure that lives in one of two states:
filled or empty. It is created in the empty state. It may be filled with a value
of type T, but only once. An attempt to fill it once it has been filled raises an
exception. Once it has been filled the value it is filled with can be retrieved.

Example 3.2 (Latch) Here is the program.

1 pub l i c c l a s s Latch [T] {
2 pr iva te var data :T;
3 pr iva te var f i l l e d : boolean=f a l s e ;
4 de f t h i s () {}
5 de f s e t (t :T) throws F i l l e dE x c e p t i o n {
6 atomic {
7 i f (f i l l e d) throw new F i l l e dE x c e p t i o n () ;
8 f i l l e d=true ;
9 }

10 data=t ;
11 }
12 de f g e t () :T {
13 when (f i l l e d) return data ;
14 }
15 }

2012 Columbia 4130 PPPP (c) IBM Page 2 of 4

A bounded buffer of type T and size n is a data-structure that permits a
producer to interact with a consumer without letting either get too far ahead
of the other.

Example 3.3 Here is the program.

1 c la s s Buf f e r [T] {
2 v a l data : Ra i l [T] ;
3 var s l o t s : I n t ;
4 var r : In t =0;
5 var w: In t =0;
6 de f t h i s (n : Int , i n i t :T){
7 s l o t s=n ;
8 data = Rai l . makeVar [T] (n , (in t)=> i n i t) ;
9 }

10 de f put (t :T) {
11 when (s l o t s > 0) {
12 s l o t s −−;
13 data (w)= t ;
14 w++;
15 i f (w==data . l e n g t h) w=0;
16 }
17 }
18 de f g e t () :T {
19 var r e s u l t :T;
20 when (s l o t s < data . l e n g t h) {
21 s l o t s ++;
22 r e s u l t=data (r) ;
23 r++;
24 i f (r==data . l e n g t h)
25 r=0;
26 }
27 return r e s u l t ;
28 }
29 }

4 Language restrictions

The when statement in X10 is accompanied with many restrictions, imposed for
efficiency of implementation.

• The body of S must be single place – no at allowed.

• The body of S must be non-blocking – no recursive when allowed.

• The body of S must be sequential – no async allowed.

Additionally, it is highly desirable that the body contain bounded number
of operations.

5 Implementation notes

There are two principle implementation techniques for when: pessimistic and
optimistic.

2012 Columbia 4130 PPPP (c) IBM Page 3 of 4

5.1 Pessimistic techniques

The pessimistic technique is to acquire a lock or a set of locks. The trick is to
ensure that all access to mutable data within the when are governed by the same
lock (or locks). If multiple locks are used they should be acquired in the same
order. On acquiring the lock, a check is made to determine if the condition
is satisfied. If it is, the body of the statement is executed (this can be done
without any further blocking), the locks are released and statement execution
terminates. If not, the activity is placed on a queue associated with the set of
mutable variable accesses that were made in evaluating the condition.

Any writes to any of these variables are modified so that they signal the
associated queue. Now whenever the asyncs in the queue are signalled, they
again attempt to acquire the lock, determine if the condition is trur or not, as
above.

Thus one can see the queue as an attempt to reduce the number of checks
of the condition. In some special cases it should be possible for the compiler to
generate efficient code that causes the asyncs in a queue to be woken up only
when the condition is already satisfied.

5.2 Optimistic techniques

In these approaches the activity attempting to execute a when statement pro-
ceeds to do so, keeping track in a log of the mutable variables that it reads and
writes. Imagine that there is a timestamp with each mutable variable; the log
records the timestamp of the variable that was read or written. The writes are
considered to happen in a private space and are not visible until commitment.
Once the statement has completed, a decision is made whether to commit or
rollback. The statement execution can commit only if no other activity has
written to a variable that it has read (this can be determined by examining the
version numbers). Otherwise the statement is rolled back and must be retried.

Once again, as above, attemps to retry can be reduced by keeping track of
which variables were read when evaluating the condition and retrying only once
one of the variables has changed.

6 Notes

2012 Columbia 4130 PPPP (c) IBM Page 4 of 4

