
Unit 2: Hardware Background
Martha A. Kim
October 10, 2012

System background and terminology

Here, we briefly review the high-level operation of a computer sys-
tem, defining terminology to be used down the road. For more back-
ground on these topics, see the related reading 1. 1 David A. Patterson and John L. Hen-

nessy. Computer Organization and
Design: The Hardware / Software Interface.
Morgan-Kauffman, fourth edition, 2009Hardware

The hardware portion of a system comprises all physical compo-
nents, including the central processing unit, memory, motherboard,
hard drive, graphics chip, network interface cards, USB and other
ports, mouse, keyboard, display and more. The many varied types of
hardware components combine to perform just three essential func-
tions: inputting and outputting data (i.e., I/O), processing data, and
storing data.

Software

Software portion consists of the many programs which direct the
actions of the hardware. Software is often classified into application
software and system software. Application software includes any ap-
plication a computer user might invoke, such as word processor, web
browser, databases, email, image editors, and so on. The system soft-
ware provides the interface between the system hardware and the
application software. The operating system is the most well-known
piece of system software. The OS manages the computer’s hardware
resources, making them available to applications via an application
programming interface or API. However, system software also includes
other tools, such as the network stack, compilers, assemblers, and
loaders.

All applications consist of one or more processes. A process is sim-
ply an executing program. From the operating system’s perspective,
a process consists of an address space, executable code, a unique
identifier, environment variables, a priority class, security permis-
sions, and atleast one thread. A thread is a list of instructions that can
be scheduled (again by the OS) for execution on a processor. Applica-
tions (and processes) may be either single-threaded (i.e., sequential) or
multi-threaded. Each thread consists of a list of instructions which are
the basic commands understood by the processor. The instructions in
a thread are executed serially, one after the other. As we will see in a



unit 2: hardware background 2

moment, the processor may, in fact, reorder the instructions slightly,
or execute multiple instructions in parallel, but to the world outside
the processor, the instructions in a thread will always appear to have
been executed in the order they are listed.

Program Execution

Programmers typically write programs in a high-level language such
as C, C++, Java, or X10. They then invoke a compiler to compile the
high-level program description to a particular instruction set architec-
ture (or ISA). The ISA defines the set of instructions that a processor
can execute. In defining how software and hardware communicate,
an ISA forms the interface between hardware and software. This is a
pivotal role in a computer system, and, as we will see later, changes
to this interface can have significant repercussions. The instruction-
level program representation is then encoded into a binary format.
This last step is called program assembly and is accomplished using
an assembler. The result of assembly is a program binary or executable.
The executable is stored, typically on a hard disk, until it is time to
execute it. At that point the operating system loads the program
into memory memory (this step is known as loading) and points the
processor to the first instruction.

Processor Architectures and Microarchitectures

The processor, or central processing unit (CPU), is is responsible for
executing a program’s instructions, thereby affecting the behavior of
the program. The processor reads each instruction from memory and
carries out the specified operation. This is the most basic operational
loop of a processor: fetch instruction, execute it, repeat with the
next instruction. A processor’s architecture consists of aspects of a
processor’s operation which are exposed to software via the ISA.
Architectural resources often include instructions, registers, and
memory addressing modes. For more detail on this area please refer
to the related text 2. 2 David A. Patterson and John L. Hen-

nessy. Computer Organization and
Design: The Hardware / Software Interface.
Morgan-Kauffman, fourth edition, 2009

By contrast, a processor’s microarchitecture describes a particular
implementation of an architecture. For example, Intel and AMD each
design, build, and sell different processors, yet they both support the
X86 ISA. The differences between Intel and AMD chips lie in their
microarchitectures. With the ISA providing compatability, each cor-
poration’s microarchitectural optimizations are applied below the ISA
and are thus functionally transparent to the software. Though they
do not affect a program’s function, they affect almost every other as-
pect of a system, including its performance, power consumption, and
reliability.



unit 2: hardware background 3

ISAs in the Wild

By far the most common ISA for desktop computers is Intel’s X86
3 3 Intel Corporation. Intel 64 and IA-

32 architectures software developer’s
manuals, b. URL http://www.intel.

com/products/processor/manuals

which is supported by the vast majority of the desktop market in-
cluding all of Intel’s and AMD’s general purpose processors. Other
common ISAs include IBM’s PowerPC 4 which was the the core of 4 IBM Corporation. Power architecture

offerings, a. URL http://www-03.ibm.

com/technology/power/powerpc.html
Apple’s computers for many years, and Sun’s UltraSPARC in the
server market. Broadening our view to embedded processors we find
ARM’s XScale ISA, implemented by ARM in iPhones 5, and by Intel 5 Anand Lal Shimpi. Apple’s iphone

dissected: We did it, so you don’t have
to. URL http://www.anandtech.com/

printarticle.aspx?i=3026

in the more and recent BlackBerries 6.

6 ZDNet. Blackberry 9000 will have
faster processor than current iphone.
URL http://blogs.zdnet.com/

blackberry/?p=472

Technology Trends and Moore’s Law

Figure 1: Rising transistor counts have
tracked Gordon Moore’s observation
that they doubled every two years.

Strictly speaking, Moore’s Law is not a law at all. Instead, this
“law” describes the empirical trend that transistors have shrunk at
an exponential rate for nearly half a century. The pattern was first
observed by Gordon Moore, co-founder of Intel, in 1965

7. Specifi- 7 Gordon E Moore. Cramming More
Components onto Integrated Circuits.
1965. URL ftp://download.intel.com/

research/silicon/moorespaper.pdf

cally, Moore observed that the number of transistors that could be
produced at a fixed cost (largely determined by silicon area) was in-
creasing exponentially, doubling roughly every two years. Moore’s
law is often mis-stated to say that processor speed doubles every two
years. However, the law speaks only to the size of the transistors as

http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals
http://www-03.ibm.com/technology/power/powerpc.html
http://www-03.ibm.com/technology/power/powerpc.html
http://www.anandtech.com/printarticle.aspx?i=3026
http://www.anandtech.com/printarticle.aspx?i=3026
http://blogs.zdnet.com/blackberry/?p=472
http://blogs.zdnet.com/blackberry/?p=472
ftp://download.intel.com/research/silicon/moorespaper.pdf
ftp://download.intel.com/research/silicon/moorespaper.pdf


unit 2: hardware background 4

indicated in Figure 1.
Moore’s has driven many correlated technology trends, including:

• Smaller transistors can switch more rapidly between logic 1 and
logic 0, thereby allowing faster clocking of the logic (think bigger
Hz). The steady increases in clock speed is known as clock scaling.

• Smaller transistors are more densely packed resulting in greater
power consumption (and head production) per unit area. This is
what is known as power density.

• Storage density has also scaled, increasing memory capacities at
nearly the raw transistor growth rate.

• Chips have shrunk. A fixed design will, every two years, require
roughly half the amount of silicon it used to.

• Smaller transistors are more prone to manufacturing defects and
to accidental bit flips during operation (the latter are often known
as soft errors or transient faults).

• Due to the complexity of designing a billion-transistor chip, design
teams and design times have grown. Processors are often in the
pipe for five years (or more) before they are released.

Some Words on Power Consumption

The power consumption of a circuit is spent in two parts:
First, there is the switching, or dynamic, power. This is the power

required to switch the transistors open and closed while carrying out
a computation. A single cycle requires one charge and discharge of
a capacitor, making the energy of this operation Eswitch = C × V2

dd.
Let f be the frequency at which the circuit operates. The switching
power simply the energy of the switching operation times the fre-
quency with which it occurs: Pswitching = Eswitch × f = C × V2

dd × f .
What this means is that slower circuits (i.e., those operating at lower
frequencies) use less power, but not less energy to perform the same
computation. By contrast, the energy is independent of operating
frequency, and this often serves as a quality measure of a logic family.

The second component of power consumption is the leakage, or
static, power. When a circuit is powered on, even if it is not actively
switching, the transistors leak power from their gates to their sources.
This leakage current (I) gives rise to additional power consumption
Pleakage = Vdd × I.

Thus, the total power consumption of a circuit can be modeled as
follows: P = Pswitching + Pleakage = C × V2

dd × f + Vdd × I.



unit 2: hardware background 5

A Processor Retrospective

1978-1986: Riding Moore’s coattails

Prior to the mid 1980s, the growth in processor performance, as
shown in Figure 2 (Source: 8) was primarily technology driven. 8 David A. Patterson and John L. Hen-

nessy. Computer Organization and
Design: The Hardware / Software Interface.
Morgan-Kauffman, fourth edition, 2009

Transistors shrunk, clock speeds increased, enabling the resulting
processor circuits to carry out computation faster and faster.

Figure 2: Historical single-threaded
processor performance.

1986-2002: What Andy gave, Bill took

As Figure 2 indicates, single processor performance improved at a
steady rate of 52% per year for 16 years 9. These performance im- 9 John L. Hennessy and David A.

Patterson. Computer Architecture:
A Quantitative Approach. Morgan-
Kauffman, fourth edition, 2008

provements were the result of both technology trends and microar-
chitectural improvements. On the technological side, clock scaling
was in full force. On the microarchitectural side, processor designers
were spending the abundance of transistors exploiting instruction-
level parallelism (ILP) extraction techniques such as superscalar
processing, out-out-of-order execution, and deeper pipelines 10. 10 John L. Hennessy and David A.

Patterson. Computer Architecture:
A Quantitative Approach. Morgan-
Kauffman, fourth edition, 2008

The performance gains shown in Figure 2 are attributable largely
to faster clocks and microarchitectural enhancements. Because these
improvements all occurred below the ISA, software and software de-
velopers got a free ride. They were able to reap the performance
gains without changing their codes or their programming model.
Moreover, procrastination by the software community was rewarded.
With sequential performance improving at approximately 2x every
1.5 years, waiting 1.5 years, making absolutely no change to the soft-



unit 2: hardware background 6

-1

0

1

2

3

4

5

Pipelined Superscalar OOO-Speculation Deep Pipelined

In
cr

ea
se

Area Performance Power MIPS/Watt (%)
Figure 3: Area, performance, power,
and efficiency effects of common ILP-
extraction techniques. Source: Shekhar
Borkar, Intel.

ware would still be rewarded with improved performance. These
“dividends of Moore’s Law” 11 were often spent adding additional 11 James R. Larus. Spending

mooreâĂŹs dividend. Communica-
tions of the ACM, May 2008. URL
Freelyavailabletechnicalreport:

http://research.microsoft.com/pubs/

70581/tr-2008-69.pdf

features and enhancements to programs.

0

500

1000

1500

90nm 65nm 45nm 32nm 22nm 16nm

P
o
w

er
 D

en
si

ty
 (

W
at

ts
/c

m
2
)

Active Power
Leakage Power

power envelope to remain constant

Figure 4: Power consumption for
current and future process nodes.
Source: Shekhar Borkar, Intel.

So, what brought this heyday to a close? Power. The power con-
sumption of these chips, and the attendant heat production, had
reached the an untenable limit. During this same period, while raw
performance was improving dramatically, power efficiency was di-
minishing. Figure 3 shows the performance benefits and area and
power costs of the principle ILP-extraction techniques applied dur-
ing this era. While these techniques improved performance, they did
little to help (and occasionally hurt) power efficiency.

Lower power efficiency implies that increased power consump-
tion is necessary to meet a fixed performance goal. Cooling concerns,
however, impose a strict limit on how much power a chip may con-
sume. This is what is known as a “power envelope”. This limit has
stayed, and is expected to remain, relatively fixed, resulting in the
situation shown in Figure 4 where the projected power requirements
of processors far outstrip our ability to cool them. Something had to
change.

2002-present: After the power wall

As a result of this power crunch, the processor industry has bet their
future on multicores. Also sometimes called chip multiprocessors (or
CMPs), multicores contain multiple processors per chip. In 2004 Intel

Freely available technical report:http://research.microsoft.com/pubs/70581/tr-2008-69.pdf
Freely available technical report:http://research.microsoft.com/pubs/70581/tr-2008-69.pdf
Freely available technical report:http://research.microsoft.com/pubs/70581/tr-2008-69.pdf


unit 2: hardware background 7

Manufacturer IBM AMD Sun Intel
Year 2004 2005 2005 2006

Processors / chip 2 2 8 2

Threads / processor 2 1 4 2

Threads / chip 4 2 32 4

Table 1: The first CMPs hit the market.

cancelled two processor designs that they had been working on. At
the time Intel President, Paul Otellini stated "We are dedicating all
our future product development to multicore designs, ... This is a sea
change in computing." Intel was not alone. Other major processor
manufacturers too began heading in the direction of multicore, as
shown in Table 1.

1

10

100

1000

1 10 100 1000 10000 100000

Processor Area

In
te

g
e
r 

P
e
rf

o
rm

a
n

ce

Figure 5: mpirical data confirming Pol-
lack’s rule, that processor performance
grows with the square root of area.

To appreciate the reasons behind the industry-wide shift, one
needs to appreciate Pollack’s Rule. Pollack’s rule states that processor
performance improves with the square root of the area budget. I.e.,
doubling the size of a microprocessor will make it 40% faster. Like
Moore’s law, this is based on empirical observations, such as the
performance v. area data plotted for some leading microprocessors
in Figure 5 (Source: 12). This rule of thumb describes the diminishing 12 Shekhar Borkar. Thousand core

chips — a technology perspective. In
Proceedings of the Design Automation
Conference, 2007. URL http://videos.

dac.com/44th/papers/42_1.pdf

returns and power inefficiencies seen in the years leading up to this
shift.

Because Moore’s law was still very much in effect, the challenge
was how to tranlate those transistors into performance per watt. Here
is why multicores have such potential in this space. Figure 6 (left)
shows a basic processor. This design has unit area, power and per-
formance. Soon, technology scaling (i.e., Moore’s law) will make it

http://videos.dac.com/44th/papers/42_1.pdf
http://videos.dac.com/44th/papers/42_1.pdf


unit 2: hardware background 8

possibe to manufacture the very same chip in one fourth the area.
This, new chip, Figure 6 (center), will have 1/4th the area, 1/4th the
power consumption (using the approximation that power is propor-
tional to area), and one half the performance (per Pollack’s law, the
performance is proportional to the square root of the area). If instead
we use that area to build a quad-core, Figure 6 (right), we will have
produced a design with the same area and power consumption as
the older chip, but with double the performance. Or more precisely,
double the perfomance potential. Realizing this potential requires
that the software actually use both cores.

Core

Area=1

Power=1

Perf=1

Core

Area=4

Power=4

Perf=2

Core Core

Core Core

Area=4

Power=4

Perf=4

Figure 6: Spending Moore’s law on
multiple cores. Assume today’s core
(black) has unit power, area and per-
formance. Quadrupling the transistor
budget offers two options: scaling a sin-
gle core (purple) or replicating the base
core (blue). Because power scales with
area, but performance with the square
root of area, the multicore option (blue)
offers a more power efficient option.

Why a sea change?

To continue to see software performance inprovements at the his-
torical rates, software must now change. Instead of single processor
performance, what is now scaling is the number of processors. Ex-
isting sequential codes will no longer automatically run faster, and
newly-written parallel applications must be able to harness increas-
ing numbers of parallel cores.

This constitutes an enormous software shakeup from below. To
reap performance, one must parallelize as much of an application’s
execution as possible. A recent article by Marty and Hill 13 explores 13 Mark D. Hill and Michael R. Marty.

Amdahl’s law in the multicore era.
IEEE Computer, July 2008. URL http://

www.cs.wisc.edu/multifacet/papers/

ieeecomputer08_amdahl_multicore.pdf

the relationship between performance and the amount of parallelism
that is exposed. The boundary between hardware and software is
significantly less crisp than it once was. What is crystal clear is that
software must be significantly more hardware-conscious than it has
been in the past, and that hardware is newly dependent on software
to provide gains in performance.

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf


unit 2: hardware background 9

How far will multicores scale?

In theory, multicore scaling can continue as long as Moore’s law con-
tinues to hold. Take the simple RISC II core from 1983. This was a
32-bit, 5 stage pipeline design with 40,760 transistors, which required
60 mm2 of silicon in a 300nm process, and could be clocked at 3MHz.
This processor requires just 0.02 mm2 in today’s 65nm process. In-
cluding a floating point unit, instruction and data caches, one could
still fit 2000 such cores on a 60 mm2 chip today. However, it is not
likely to continue unchecked as analytical studies indicate that there
will be diminishing returns beyond a certain point 14. 14 Mark D. Hill and Michael R. Marty.

Amdahl’s law in the multicore era.
IEEE Computer, July 2008. URL http://

www.cs.wisc.edu/multifacet/papers/

ieeecomputer08_amdahl_multicore.pdf
References

Shekhar Borkar. Thousand core chips — a technology perspective.
In Proceedings of the Design Automation Conference, 2007. URL http:

//videos.dac.com/44th/papers/42_1.pdf.

IBM Corporation. Power architecture offerings, a. URL http:

//www-03.ibm.com/technology/power/powerpc.html.

Intel Corporation. Intel 64 and IA-32 architectures software de-
veloper’s manuals, b. URL http://www.intel.com/products/

processor/manuals.

John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan-Kauffman, fourth edition, 2008.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. IEEE Computer, July 2008. URL http://www.cs.wisc.edu/

multifacet/papers/ieeecomputer08_amdahl_multicore.pdf.

James R. Larus. Spending mooreâĂŹs dividend. Communications of
the ACM, May 2008. URL Freelyavailabletechnicalreport:http:

//research.microsoft.com/pubs/70581/tr-2008-69.pdf.

Gordon E Moore. Cramming More Components onto Integrated Cir-
cuits. 1965. URL ftp://download.intel.com/research/silicon/

moorespaper.pdf.

David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware / Software Interface. Morgan-Kauffman,
fourth edition, 2009.

Anand Lal Shimpi. Apple’s iphone dissected: We did it, so you
don’t have to. URL http://www.anandtech.com/printarticle.

aspx?i=3026.

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://videos.dac.com/44th/papers/42_1.pdf
http://videos.dac.com/44th/papers/42_1.pdf
http://www-03.ibm.com/technology/power/powerpc.html
http://www-03.ibm.com/technology/power/powerpc.html
http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
Freely available technical report:http://research.microsoft.com/pubs/70581/tr-2008-69.pdf
Freely available technical report:http://research.microsoft.com/pubs/70581/tr-2008-69.pdf
ftp://download.intel.com/research/silicon/moorespaper.pdf
ftp://download.intel.com/research/silicon/moorespaper.pdf
http://www.anandtech.com/printarticle.aspx?i=3026
http://www.anandtech.com/printarticle.aspx?i=3026


unit 2: hardware background 10

ZDNet. Blackberry 9000 will have faster processor than current
iphone. URL http://blogs.zdnet.com/blackberry/?p=472.

http://blogs.zdnet.com/blackberry/?p=472

	System background and terminology
	A Processor Retrospective
	Why a sea change?
	How far will multicores scale?

