CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 1

Prof. Martha A. Kim
Columbia University
Updated: Due Feb 2, 2016 at 8:40 AM

Write your name and UNI on each page of your solutions.
Show your work for each problem.
Note your collaborators.

1. (20 pts.) Add the following numbers without converting to decimal.
(a) 01010_{2} and 11001_{2}
(b) 713_{8} and 405_{8}
(c) $A B C_{16}$ and $A 78_{16}$
2. (15 pts.) Prove or disprove that the exclusive or operation (\oplus) is associative.
3. (20 pts.) Convert the Boolean functions below to minimal product-of-sums and minimal sum-of-products form.
(a) $x \oplus y \oplus z$
(b) $z \bar{w}+x y \bar{w}+x \bar{y} z$
4. (20 pts.) Using nothing but 3-input NAND gates (NAND3), give a schematic for f .

x	y	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

5. (15 pts.) Use algebraic manipulation (including 2-way DeMorgan's if you wish) to prove the 3-way statement of DeMorgan's below.

$$
\begin{aligned}
& \overline{x \cdot y \cdot z}=\bar{x}+\bar{y}+\bar{z} \\
& \overline{x+y+z}=\bar{x} \cdot \bar{y} \cdot \bar{z}
\end{aligned}
$$

6. (30 pts.) Implement $X \oplus Y \oplus Z$ using only the components in the table below.

	Cost (transistors)	Delay (ns)
INV	2	1
AND2	6	2.4
OR2	6	2.4
XOR2	14	6.1

Find the implementation that has
(a) the smallest transistor cost
(b) the smallest delay
(c) the smallest delay-cost product

