CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 1

Prof. Martha A. Kim

Columbia University

Updated: Due Feb 2, 2016 at 8:40 AM

Write your name **and UNI** on each page of your solutions. Show your work for each problem. Note your collaborators.

- 1. (20 pts.) Add the following numbers without converting to decimal.
 - (a) 01010_2 and 11001_2
 - (b) 713₈ and 405₈
 - (c) ABC_{16} and $A78_{16}$
- 2. (15 pts.) Prove or disprove that the exclusive or operation (\oplus) is associative.
- 3. (20 pts.) Convert the Boolean functions below to minimal product-of-sums and minimal sum-of-products form.
 - (a) $x \oplus y \oplus z$
 - (b) $z\overline{w} + xy\overline{w} + x\overline{y}z$
- 4. (20 pts.) Using nothing but 3-input NAND gates (NAND3), give a schematic for f.

х	у	z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

5. (15 pts.) Use algebraic manipulation (including 2-way DeMorgan's if you wish) to prove the 3-way statement of DeMorgan's below.

$$\frac{\overline{x \cdot y \cdot z}}{x + y + z} = \overline{x} + \overline{y} + \overline{z}$$
$$\overline{x + y + z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

6. (30 pts.) Implement $X \oplus Y \oplus Z$ using only the components in the table below.

	Cost (transistors)	Delay (ns)
INV	2	1
AND2	6	2.4
OR2	6	2.4
XOR2	14	6.1

Find the implementation that has

- (a) the smallest transistor cost
- (b) the smallest delay
- (c) the smallest delay-cost product