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Outline (H&H 6.1-6.7.1)
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• Compiling, Assembling, and Loading

• Odds and Ends



Assembly Language

• To command a computer, you must understand its language.

• Instructions: words in a computer’s language

• Instruction set: the vocabulary of a computer’s language

• Instructions indicate the operation to perform and the operands to use.

• Assembly language: human-readable format of instructions

• Machine language: computer-readable format (1’s and 0’s)



Machine v. Assembly Code

(source code)

(assembly code)

(machine code)



What is an ISA?

• An Instruction Set Architecture, or ISA, is an interface between the hardware 
and the software.

• An ISA consists of:

• a set of operations (instructions)

• data units (sizes, addressing modes, etc.)

• processor state (registers)

• input and output control (memory operations)

• execution model (program counter)
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Why have an ISA?

• An ISA provides binary compatibility across machines that share the ISA

• Any machine that implements the ISA X can execute a program encoded 
using ISA X.

• You typically see families of machines, all with the same ISA, but with different 
power, performance and cost characteristics.

• e.g., the MIPS family: MIPS 2000, 3000, 4400, 10000
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MIPS Architecture

• MIPS = Microprocessor without Interlocked Pipeline Stages

• MIPS architecture developed at Stanford in 1984, spun out into MIPS 
Computer Systems 

• As of 2004, over 300 million MIPS microprocessors had been sold

• Used in many commercial systems, including Silicon Graphics, Nintendo, and 
Cisco

• Once you’ve learned one architecture, it’s easy to learn others.



MIPS is a RISC Architecture

• RISC = Reduced Instruction Set Computer

• RISC is an alternative to CISC (Complex Instruction Set Computer) where 
operations are significantly more complex.

• Underlying design principles, as articulated by Hennessy and Patterson:

• Simplicity favors regularity

• Make the common case fast

• Smaller is faster

• Good design demands good compromises

• MIPS (and other RISC architectures) are “load-store” architectures, meaning 
all operations performed only on operands in registers.  (The only instructions 
that access memory are loads and stores)



What is an ISA?

• An Instruction Set Architecture, or ISA, is an interface between the hardware 
and the software.

• An ISA consists of:

• a set of operations (instructions)

• data units (sized, addressing modes, etc.)

• processor state (registers)

• input and output control (memory operations)

• execution model (program counter)
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32-bit data word

32, 32-bit registers

32-bit program counter

load and store

arithmetic, logical, 
conditional, branch, etc.

(for MIPS)



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An example Program in MIPS: Factorial(n)
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An Program in MIPS
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code

Instructions 
(description of operation to 

be performed during a cycle)



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An Program in MIPS
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code

Registers



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An Program in MIPS
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code

Constants



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An Program in MIPS
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code

Access to 
main memory



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

An Program in MIPS
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS code

Control Labels 
and “Jump” 
Instructions



Instruction Classes

• Memory Access: Move data to/from memory from/to registers

• Arithmetic/Logic: Perform (via functional unit) computation on data in 
registers (store result in a register)

• Jump/Jump Subroutine: direct control to a different part of the program (not 
next word in memory)

• Conditional branch: test values in registers.  If test returns true, move control 
to different part of program.  Otherwise, proceed to next word

16

NB:  These are functional classes.  Later we will classify the 
instructions according to their formats (R-type, I-type, etc.)



Arithmetic Instructions

• Addition and subtraction

• Three operands: two source, one destination

• add a, b, c    # a gets b + c

• All arithmetic operations (and many others) have this form

17

Design principle:

Regularity makes implementation simpler

Simplicity enables higher performance at lower cost



Arithmetic Example 1
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f = (g + h) - (i + j)

C code MIPS assembly

add t0, g, h  # temp t0=g+h
add t1, i, j  # temp t1=i+j
sub f, t0, t1 # f = t0-t1



Arithmetic Example 1 w. Registers
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MIPS assembly w.o registers

add t0, g, h  # temp t0=g+h
add t1, i, j  # temp t1=i+j
sub f, t0, t1 # f = t0-t1

MIPS assembly w. registers

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

store: f in $s0, g in $s1, h in $s2, i in $s3, and j in $s4



Memory Operands

• Main memory used for composite data (e.g., arrays, structures, dynamic data)

• To apply arithmetic operations

• Load values from memory into registers (load instruction = mem read)

• Store result from registers to memory (store instruction = mem write)

• Memory is byte-addressed (each address identifies an 8-bit byte)

• Words (32-bits) are aligned in memory (meaning each address must be a multiple 
of 4)

• MIPS is big-endian (i.e., most significant byte stored at least address of the word)

20



Memory Operands

• Main memory used for composite data (e.g., arrays, structures, dynamic data)

• To apply arithmetic operations

• Load values from memory into registers (load instruction = mem read)

• Store result from registers to memory (store instruction = mem write)

• Memory is byte-addressed (each address identifies an 8-bit byte)

• Words (32-bits) are aligned in memory (meaning each address must be a multiple 
of 4)

• MIPS is big-endian (i.e., most significant byte stored at least address of the word)
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Memory Operand Example 1

22

g = h + A[8]

C code

MIPS assembly

lw $t0, 32($s3)   # load word
add $s1, $s2, $t0

g in $s1, h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)

offset base register



Memory Operand Example 2
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A[12] = h + A[8]

C code

MIPS assembly

lw $t0, 32($s3)   # load word
add $t0, $s2, $t0
sw $t0, 48($s3)   # store word

h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)
index = 12 requires offset of 48 (12 items x 4 bytes per word)



Registers v. Memory

• Registers are faster to access than memory

• Operating on data in memory requires loads and stores

• (More instructions to be executed)

• Compiler should use registers for variables as much as possible

• Only spill to memory for less frequently used variables

• Register optimization is important for performance

24



Immediate Operands

• Constant data encoded in an instruction

• No subtract immediate instruction, just use the negative constant

25

Design principle: make the common case fast

Small constants are common

Immediate operands avoid a load instruction

addi $s3, $s3, 4

addi $s2, $s1, -1



The Constant Zero

• MIPS register 0 ($zero) is the constant 0

• $zero cannot be overwritten

• Useful for many operations, for example, a move between two registers

26

add $t2, $s1, $zero



Register Numbers
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Note:  Register 1 ($at) is reserved for the assembler, and 
26-27 ($k0-$k1) are reserved for the OS.



MIPS instructions to date
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NB:  reg = register number between 0 and 31; 
address = 16-bit address



MIPS R-format Instructions

• Instruction fields

• op: operation code (opcode)

• rs: first source register number

• rt: second source register number

• rd: register destination number

• shamt: shift amount (00000 for now)

• funct: function code (extends opcode)

29

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits



R-format Example
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op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000



MIPS I-format Instructions

• Includes immediate arithmetic and load/store operations

• op: operation code (opcode)

• rs: first source register number

• rt: destination register number

• constant: offset added to base address in rs, or immediate operand

31

op rs rt constant
6 bits 5 bits 5 bits 16 bits



MIPS Logical Operations

• Instructions for bitwise manipulation

•

32

• Useful for inserting and extracting groups of bits in a word



Shift Operations

• Shift left logical (op = sll)

• Shift left and fill with 0s

• sll by i bits multiplies by 2

• Shift right logical (op = srl)

• Shift right and fill with 0s

• srl by i bits divides by 2  (for unsigned values only)

• shamt indicates how many positions to shift

• example:        sll $t2, $s0, 4  # $t2 = $s0 << 4 bits

• R-format

33

0 0 16 10 4 0

i

i



Full Complement of Shift Instructions

• sll: shift left logical (sll $t0, $t1, 5  # $t0 <= $t1 << 5)

• srl: shift right logical (srl $t0, $t1, 5  # $t0 <= $t1 >> 5)

• sra: shift right arithmetic (sra $t0, $t1, 5  # $t0 <= $t1 >>> 5)

• Variable shift instructions:

• sllv: shift left logical variable 

(sllv $t0, $t1, $t2 # $t0 <= $t1 << $t2)

• srlv: shift right logical variable 

(srlv $t0, $t1, $t2 # $t0 <= $t1 >> $t2)

• srav: shift right arithmetic variable 

(srav $t0, $t1, $t2 # $t0 <= $t1 >>> $t2)
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Generating Constants

• 16-bit constants using addi:

• 32-bit constants using load upper immediate (lui*) and ori  *lui loads the 
16-bit immediate into the upper half of the register and sets the lower half to 
0.)

35

*lui loads the 16-bit immediate into the upper half of the register and sets 
the lower half to 0.

// int is a 32-bit signed word
int a = 0x4f3c

C code

MIPS assembly

# $s0 = a
addi $s0, $0, 0x4f3c

int a = 0xFEDC8765;

C code MIPS assembly

lui $s0, 0xFEDC
ori $s0, $s0, 0x8765



AND Operations

• example:        and $t0, $t1, $t2  # $t0 = $t1 & $t2

• Useful for masking bits in a word (selecting some bits, clearing others to 0)
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0000 0000 0000 0000 0000 1101 1100 0000$t1:

0000 0000 0000 0000 0011 1100 0000 0000$t2:

0000 0000 0000 0000 0000 1100 0000 0000$t0:



OR Operations

• example:        or $t0, $t1, $t2  # $t0 = $t1 | $t2

• Useful to include bits in a word (set some bits to 1, leaving others unchanged)
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0000 0000 0000 0000 0000 1101 1100 0000$t1:

0000 0000 0000 0000 0011 1100 0000 0000$t2:

0000 0000 0000 0000 0011 1101 1100 0000$t0:



NOT Operations

• Useful to invert bits in a word 

• MIPS has 3 operand NOR instruction, used to compute NOT

• example:        nor $t0, $t1, $zero  # $t0 = ~$t1

38

0000 0000 0000 0000 0000 1101 1100 0000$t1:

1111 1111 1111 1111 1111 0010 0011 1111$t0:



Conditional Operations

• Branch to a labeled instruction if a condition is true

• Otherwise, continue sequentially

• Instruction labeled with colon e.g.       L1: add $t0, $t1, $t2

• beq rs, rt, L1 # if (rs == rt) branch to instr labeled L1

• bne rs, rt, L1 # if (rs != rt) branch to instr labeled L1

• j L1           # unconditional jump to instr labeled L1

39



Compiling an If Statement

40

if (i == j)
    f = g+h
else
    f = g-h

C code

MIPS assembly

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: 
sub $s0, $s1, $s2

Exit: 

• Where, f is in $s0, g is in $s1, and h is in $s2

• The assembler calculates the addresses corresponding to the labels



Compiling a Loop Statement
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while (save[i] == k)
    i += 1

C code

MIPS assembly

Loop: 
sll $t1, $s3, 2
add $t1, $t1, $s5
lw $t0, 0($t1)
bne $t0, $s4, Exit
addi $s3, $s3, 1
j Loop

Exit: 

• Where, i is in $s3, k is in $s4, address of save in $s5



Basic Blocks

• A basic block is a sequence of instructions with

• No embedded branches except at the end

• No branch targets except at the beginning

• A compiler identifies basic blocks for optimization

• Advanced processors can accelerate execution of 
basic blocks

42



More Conditional Operations

• Set result to 1 if a condition is true

• slt rd, rs, rt            # (rs < rt) ? rd=1 : rd=0

• slti rd, rs, constant     # (rs < constant) ? rd=1 : rd=0

• Use in combination with beq or bne

43

slt $t0, $s1, $s2    # if ($s1 < $s2) 
bne $t0, $zero, L    # branch to L



Branch Instruction Design

• Why not blt, bge, etc.?

• Hardware for <, >= etc.  is slower than for = and !=

• Combining with a branch involves more work per instruction, requiring a 
slower clock

• All instructions penalized because of this

• As beq and bne are the common case, this is a good compromise

44



Signed v. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

• Example:

45

1111 1111 1111 1111 1111 1111 1111 1111$s0:

0000 0000 0000 0000 0000 0000 0000 0001$s1:

slt $t0, $s0, $s1  # signed: -1 < 1 thus $t0=1
sltu $t0, $s0, $s1 # unsigned: 4,294,967,295 > 1 thus $t0=0



Procedure Calling

• Steps required:

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

46

“caller”

“callee”

1

2

3

4

5

6



Register Usage
• $a0-$a3: arguments

• $v0, $v1: result values

• $t0-$t9: temporaries, can be overwritten by callee

• $s0-$s7: contents saved 

• $gp: global pointer for static data

• $sp: stack pointer

• $fp: frame pointer

• $ra: return address 

47

*** must be restored by callee

Note:  There is nothing special about these 
registers’ design, only their implied use!!!

e.g., could store return value in $sp if calling 
and callee program both agreed to do this - 
just beware of messing up the stack for all 
other programs if not properly restored



Memory Layout

• Text: program code

• Static data: global variables

• e.g., static variables in C, constant arrays 
and strings

• $gp initialized to an address allowing +/- 
offsets in this segment

• Dynamic data: heap

• e.g., malloc in C, new in Java

• Stack: automatic storage

48



Local Data on the Stack
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• Local data allocated by the callee

• Procedure frame (activation record) used by compiler to manage stack 
storage

• Cross-call register preservation 



Procedure Call Instructions

• Procedure call: jump and link

• jal ProcedureLabel

• Address of following instruction put in $ra

• Jumps to target address

• Procedure return: jump register

• jr $ra

• copies $ra to program counter

• can also be used for computed jumps (e.g., for case/switch statements)

50



Leaf Procedure Example
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int leaf_example(int g,h,i,j) {
    int f;
    f = (g+h) - (i+j);
    return f;
}

C code

• Arguments g, h, i, j in $a0 - $a3

• f will go in $s0 (so will have to save existing contents of $s0 to stack)

• result in $v0



Leaf Procedure Example 2
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MIPS assembly

leaf_example:
    addi $sp, $sp, -4
    sw $s0, 0($sp)
    add $t0, $a0, $a1
    add $t1, $a2, $a2
    sub $s0, $t0, $t1
    add $v0, $s0, $zero
    lw $s0, 0($sp)
    addi $sp, $sp, 4
    jr $ra 

save $s0 on stack

procedure body

result

restore $s0

return

int leaf_example(int g,h,i,j) {
    int f;
    f = (g+h) - (i+j);
    return f;
}

C code



Non-Leaf Procedures
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• A non-leaf procedure is a procedure that calls another procedure

• For a nested call, the caller needs to save to the stack

• Its return address

• Any arguments and temporaries needed after the call

• After the call, the caller must restore these values from the stack



Non-Leaf Procedure Example

54

int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code



! fact:
    addi $sp, $sp, -8     # adjust stack for 2 items
    sw   $ra, 4($sp)      # save return address
    sw   $a0, 0($sp)      # save argument
    slti $t0, $a0, 1      # test for n < 1
    beq  $t0, $zero, L1
    addi $v0, $zero, 1    # if so, result is 1
    addi $sp, $sp, 8      #   pop 2 items from stack
    jr   $ra              #   and return
L1: addi $a0, $a0, -1     # else decrement n  
    jal  fact             # recursive call
    lw   $a0, 0($sp)      # restore original n
    lw   $ra, 4($sp)      #   and return address
    addi $sp, $sp, 8      # pop 2 items from stack
    mul  $v0, $a0, $v0    # multiply to get result
    jr   $ra              # and return

Non-Leaf Procedure Example 2
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int fact(int n) {
    if (n < 1) return 1;
    else return (n * fact(n - 1));
}

C code

MIPS assembly



Character Data

• Byte-encoded character sets

• ASCII: 128 characters (95 graphic, 33 control)

• Latin-1: 256 characters (ASCII, + 96 more graphic characters)

• Unicode: 32-bit character set

• Used in Java, C++ wide characters

• Most of the world’s alphabets, plus symbols

• UTF-8, UTF-16 are variable-length encodings

56



Byte/Halfword Operations

• Could use bitwise operations

• MIPS has byte/halfword load/store

• lb rt, offset(rs)  # sign extend byte to 32 bits in rt

• lh rt, offset(rs)  # sign extend halfword to 32 bits in rt

• lbu rt, offset(rs) # zero extend byte to 32 bits in rt

• lhu rt, offset(rs) # zero extend halfword to 32 bits in rt

• sb rt, offset(rs)  # store rightmost byte

• sh rt, offset(rs)  # store rightmost halfword

57



String Copy Example

• Null-terminated string

• Addresses of x and y in $a0 and $a1 respectively

• i in $s0

58

void strcpy (char x[], char y[]) {
   int i;
   i = 0;
   while ((x[i]=y[i]) != ‘\0’) 
      i += 1;
}

C code (naive)



String Copy Example 2

59

void strcpy (char x[], char y[]) {
   int i;
   i = 0;
   while ((x[i]=y[i]) != ‘\0’) 
      i += 1;
}

C code (naive)
! strcpy   :

    addi $sp, $sp, -4      # adjust stack for 1 item
    sw   $s0, 0($sp)       # save $s0
    add  $s0, $zero, $zero # i = 0
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
    lbu  $t2, 0($t1)       # $t2 = y[i]
    add  $t3, $s0, $a0     # addr of x[i] in $t3
    sb   $t2, 0($t3)       # x[i] = y[i]
    beq  $t2, $zero, L2    # exit loop if y[i] == 0  
    addi $s0, $s0, 1       # i = i + 1
    j    L1                # next iteration of loop
L2: lw   $s0, 0($sp)       # restore saved $s0
    addi $sp, $sp, 4       # pop 1 item from stack
    jr   $ra               # and return

MIPS assembly



32-bit constants

• Most constants are small, 16 bits usually sufficient

• For occasional, 32-bit constant: 

• copies 16-bit constant to the left (upper) bits of rt

• clears right (lower) 16 bits of rt to 0

• example usage:
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lui rt, constant

0000 0000 0111 1101 0000 0000 0000 0000$s0:lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000$s0:ori $s0, $s0, 2304



Branch Addressing

• Branch instructions specify: opcode, two registers, branch target

• Most branch targets are near branch (either forwards or backwards)

• PC-relative addressing

• target address = PC + (offset * 4)

• PC already incremented by four when the target address is calculated
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op rs rt constant
6 bits 5 bits 5 bits 16 bits



Jump Addressing

• Jump (j and jal) targets could be anywhere in a text segment, so, encode the 
full address in the instruction

• target address = PC[31:28] : (address * 4)
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op address
6 bits 26 bits



9
9
 

4
0
0
2
1

0
32

Target Addressing Example

• Loop code from earlier example

• Assume loop at location 80000
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Loop: sll $t1, $s3, 2       
      add $t1, $t1, $s5
      lw $t0, 0($t1)
      bne $t0, $s4, Exit
      addi $s3, $s3, 1
      j Loop
Exit: 

80000
80004
80008
80012
80016
80020
80024

0
0
35
5
8
2

0
9
9
8
19

19
21
8
20
19
20000



Addressing Mode Summary
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Branching Far Away	

• If a branch target is too far to encode with a 16-bit offset, assembler rewrites 
the code

• Example:
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    bne $s0,$s1, L2
    j L1
L2:!…

! beq $s0,$s1, L1 becomes



Assembler Pseudoinstructions

• Most assembler instructions represent machine instructions, one to one.

• Pseudoinstructions are shorthand.  They are recognized by the assembler but 
translated into small bundles of machine instructions.

• $at (register 1) is an “assembler temporary”
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move $t0,$t1              add $t0,$zero,$t1becomes

blt $t0,$t1,L             slt $at,$t0,$t1
                          bne $at,$zero,L

becomes



Programming Pitfalls

• Sequential words are not at sequential addresses -- increment by 4 not by 1!

• Keeping a pointer to an automatic variable (on the stack) after procedure 
returns
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Interpreting Machine Language Code

• Start with opcode

• Opcode tells how to parse the remaining bits

• If opcode is all 0’s

• R-type instruction

• Function bits tell what instruction it is 

• Otherwise, opcode tells what instruction it is
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In conclusion: Fallacies

1. Powerful (complex) instructions lead to higher performance

• Fewer instructions are required

• But complex instructions are hard to implement.  As a result implementation may 
slow down all instructions including simple ones.

• Compilers are good at making fast code from simple instructions.

2. Use assembly code for high performance

• Modern compilers are better than predecessors at generating good assembly

• More lines of code (in assembly) means more errors and lower productivity
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In conclusion: More Fallacies

3. Backwards compatibility means instruction set doesn’t change
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