CSEE 3827: Fundamentals of Computer Systemes,
Spring 201 |

3. Combinational Circuit Design

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/spl |/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Outline (H&H 2.8, 5.2)

e Standard combinational circuits
e Decoder
e Encoder / priority encoder (bonus, not in text)
e Code converter (bonus, not in text)
e Multiplexer
e Addition
e Half and full adders
e Ripple carry adder
e Carry lookahead adder
e Subtraction
e Comparator (“!=" in lecture, “<" in text)
e ALU (in text, not covering yet)
e Shifter

Combinational circuits

e Combinational circuits are stateless

e The outputs are functions only of the inputs

Combinational circuit Qutputs

Hierarchical design

3-4
“Big”Circuit No

Design small circuits to be used in a bigger circuit

Smaller Circuits
A;

Bi
(b)

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Hierarchical design (It's a comparator!)

3-4

No (4-bit equality comparator)

(b)

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

—nabler circuits

3-15

Output is “enabled” (F=A) only when input ‘ENABLE’ signal is asserted (EN=1)

[

(a)

EN [>§ D :
(b)

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Decoder-based circuits

Converts n-bit input to m-bit output, where n <=m <= 2"

3:8
decoder

“Standard” Decoder: it" output = 1, all others = 0,
where i is the binary representation of the input (ABC)

Decoder-based circuits

Converts n-bit input to m-bit output, where n <=m <= 2"

3:8
decoder

eqg., ABC = 101 (/=3)

“Standard” Decoder: it" output = 1, all others = 0,

where i is the binary representation of the input (ABC)

Internal design of 1:2 decoder

3-17

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Internal design of 2:4 decoder

3-18

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Hierarchical design of 2:4 decoder

1:2
decoder

1:2
decoder

2:4 decoder

e

Can betild 2:4 decoder owtd of teoo 1°2 decoders

land Some additiona/ c/rca/z‘ry>

Hierarchical design of 3:8 decoder

1:2 decoder

2:4 decoder

UAURWUAY

3:8 decoder

UAURUAY

—Nncoders

T 3-7

n
Inverse of a decoder: converts m-bit input to n-bit output, where n <=m <=2

L1 TABLE 3-7
Truth Table for Octal-to-Binary Encoder

Inputs Outputs

O
~

O
o

O
ol

D, D

O
N
O

O
o

>
N

A,

>
o

_o O O O O o O
OR OO OO OO
SOk OO o OO
SO O R OO OO
S OO O R O OO
SO OO O kOO
oo OO OO = O
OO OO OO O
—_ == = OO OO
—_ P, OO R P, OO
—_ O R O R OO

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Decoder and encoder summary

Decoder

BCD values One-hot encoding

0
0
0

Encoder

Note: for Encoders - input is assumed to have just one 1, the rest 0's

In class design: priority encoder

A priority encoder takes 2*n bit input () and produces n bits of output (K) indicating in BCD
the position of the most significant 1 on the input.

13 12

Priority
Encoder

We will leverage a regular encoder which takes 2”n bit one-hot encoded input (J) and
produces n bits of output (K) indicating in BCD the position of the 1 on the input.

J3 J2 J1 JO | K1 KO

Encoder

In class design: priority encoder (2)

This gets us part of the way there, leaving us with a simpler problem of translating | into J:

I3 12 1 10}J3 J2 J1 JO

Encoder

0 1 x
Priority Encoder X x

\

NB: An input i = X is still a
don’t care, it means “for all
possible values of i”. So
here input 1xxx means any
4-pbit input starting with a 1,
..e., 1000, 1001, 1010,
1011, 1100, ...

From inspection of the truth table we can see the following
definitions of Jx. Could also have used k-maps.

J3 =13

J2 =12'13

J1 =111213

JO=10111213

(General code conversion

3-3

(a) Segment designation (b) Numeric designation for display

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

i

O X | X[X]X]|X[X]X
XX X[X]X]X]X
XX X[X]X]X]X

O X | X[X]X]|X[X]X
XX X[X]X]X]X

O[O X X[X]X]|X[X]X

)
O
@)
O
®
N
>
P —
= —
E

Code conversion

Code conversion

i

O X | X[X]X]|X[X]X

XX X[X]X]X]X
XX X[X]X]X]X
O X | X[X]X]|X[X]X

XX X[X]X]X]X

O[O X X[X]X]|X[X]X

1

)
O
@)
O
®
N
>
N
=
E

1

when input
47

what outputs
V

.9
“lights up

")

i

O X | X[X]X]X[X]X
XX X[X]X]X]X
XX X[X]X]X]|X

O X | X[X]X]|X[X]X
XX X[X]X]X]|X

O[O X X[X]X]|X[X]X

)
O
@
@)
®
N
>
> —
= —
M

=1

For what values does
C output f “light up” for?

Code conversion
b

Algebra and Circuit for “f”

=1

0
|
X
X

f=W +YZ+XZ+XY =W + X+Y)Z + XY

Multiplexers (or Muxes)

e Combinational circuit that selects binary information from one of many input
lines and directs it to one output line

D

ull

N selection bits
indicate (in binary) which input feeds to the output

Multiplexers (or Muxes)

e Combinational circuit that selects binary informati
lines and directs it to one output line

T

~N O o WO N =2 O

ol

N selection bits
indicate (in binary) which input feeds to the output

Internal mux organization

3-26

Selector Logic

Decoder

Enabler logic
4 X 2 AND-OR

Or gate “passes
through” the non-
zeroed out |;

U U

I3

Only 1 AND gate passes “1” through

AND gates “zero out” unselected |

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

INn class exercise

How would you implement an 8:1 mux using two 4:1 muxes?

Multiplexer truth table

2/7n inputs n-bit BCD value 1 output

-
A

—

AAAAAAAA

2"n outputs

X
5
-
)
O

n-bit BCD value

1 input

0
D
X
D
=
O

0
)]
-
D
x

[

[o!

ot
D
=
D

A

Muxes and demuxes called “steering logic”

Representing Functions with Decoders and MUXes

ee.g.,F=AC +BC

Decoder

_L_L_L_LOOOO>

—~ | 2 1O = 11210100

e Decoder: OR minterms for which F should evaluate to 1

e MUX: Feed in the value of F for each minterm

A Slick MUX trick

e Can use a smaller MUX with a little trick e.g., F = AC + Ba

e Note for rows paired below, A&B have same values, C iterates between 0&1

e For the pair of rows, F either equals O, 1, C or C

Slick MUX trick: Example 2

Oe.g.,F=KC+I§5+A(_3

ABC
ABC

Addition: The Halt-Adder

e Addition of 2 bits: A & B produces a summand (S) and carry (C)

XO

e But to do addition, we really need to add 3 bits at a time (to account for

carries), e.g., 011 «———carry bits

101-
T 100"
1010

The Full Adder

e Takes as input 2 digits (A&B) and a previous carry (P)

S=AeoBaoP
C=AB + AP + BP

5-Pbit ripple carry adder

Computes asazacaiao + babslbobilo

a4 a3 a2

lb4 lbs lbz
o I Y e 2 Y
full full full

adder adder adder

c— 1 —

s4 s3 s2

® Note how computation “ripples” through adders from left to right
® Each full adder’s has depth 2 (inputs pass through 2 gates to reach output)
® Full adder that computes sj cannot “start” its computation until previous full
adder computes carry
® The longest depth in a k-bit ripple carry adder is 2k

Adder/subtractor for #'s in 2’s complement form

S=0: B
unchanged,
Co=0: add

S=1:B
complemented,
Co=1 (bits flipped

and 1 added):
subtract

Co

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Handling overflow

1111
(-5) 1011
(-3) 1101

1000

0010
(-6) 1010
(3) 0011

1101

Handling overflow

cd c3|c2 cl c0
a3|la2 al a0
b3|b2 bl b0
s3|s2 sl sO0

Q
w
o)
w
Q

w

overflow

n bit two’s comp: -2/An
<--->2/°\n -1

split into pos and neg
ranges and find smallest
and largest possible
results. show that they’re
in range for twos comp.

R ik Pk O O jJO O

sum of
two negs
IS neg

—

_ =mlJlo o » R |lo o
~ o]l o = oflr o
_ =]l o mr olo o
m olo » o | o

Overflow computation in adder/subtractor

For 2’s complement, overflow if 2 most significant carries differ

FA

oL

\J

= 0 Chen no overstr =%)

= | Z‘/’len oVerfloww

Ripple-Carry adder circuit depth

AzA2A1A0 + B3BoB1Bo = S3525150

Bs As B2 Ao Bi Aq Bo Ao

e Depth of a circuit is the longest
(most gates to go through) path

e Overflow has depth 8

e S3 has depth 7

e In general, Si has depth 2i+1 in
Ripple-Carry Adder

Overflow

Carry lookahead adder (CLA)

e Goal: produce an adder of shorter circuit depth

e Start by rewriting the carry function
Ci+1 = aibi + aiCi + biCi
Ci+1 = aibi + Ci(ai+i)

Ci+1 = Qi + Ci(pj)

N

carry generate carry propagate
gi= aibi Oi= ai+ Di

Carry lookahead adder (CLA) (2)

e Can recursively define carries in terms of propagate and generate signals
C1 = Jo + Coo
Ce = g1 + CiPs
= G + (Qo + Coo)0:
= g1+ JoP1 + CofPops
Cs = Q2 + C202

= Q-+ (91 + Qo1 + Copop1)p2
= Q2 + g1P2 + JoP1P2 + CoPoPP1P02

e ith carry has i+1 product terms, the largest of which has i+1 literals

e |[f AND, OR gates can take unbounded inputs: total circuit depth is 2 (SoP
form)

e |f gates take 2 inputs, total circuit depth is 1 + log2 k for k-bit addition

Carry lookahead adder (CLA) (3)

Co=0 So=ao @ o ® Co
C1 = Jo + Cojo Si=ai1 ® b1 @ Cr
C2 = Q1 + QoP1 + CoPopPr S2=a2 ® b2 @ C2
C3 = Q2 + gi1P2 + QoP1P2 + CoPoP12 Ss3=as @ 3 ® Cs
C4 = Qo + GePo + GiP=Po + GoP1P=Pa+ CoPe1P:zP: Sa=a4 ® D4 ® Ca

B> Ao B1 Aq Bo Ao

L e
E_b : %—@j Depth of 3 for a

| Ci

dj | _J Depth of 4 for all s, i>0

Note: gates take only 2 inputs: depth
iIncreases by a log?2 factor: still much

less than linear of ripple-carry adder
40

Contraction

Contraction is the simplification of a circuit through constant input values.

Contraction example: adder to incrementer

e \What is the hardware and delay savings of implementing an incrementer
using contraction? a3 a2 a0

e TS TS T

adder adder adder

| |

sO

|
Can be reduced to half-adders

Incrementer
circult

Multi-wire notation

e Useful when running a bunch of bits in parallel to the same (similar place)

Shifter Circuit

* Shifts bits of a word: Ak-1Ako.. . AcA1A0

L

Shifter +n n selector bits

+k
Sk-1Bk-2...B2B1Bo

e \Various types of shifters
e Barrel: selector bits indicate (in binary) how “far” bits shift
e selector value = |, then Bi = Ai
e bits can “wraparound” B; (mod 2") = Ai,j (mod 2") or rollout (Bi=0 for i<j)

e | /R with enable: n=2, high bit enables, low bit indicates direction (e.g.,
O=left [Bi = Ai-1], 1=right [Bi = Ai+1])

Barrel Shifter Design with wraparound (using MUXS)
A A

TS1SO

Ba

e Basic form of design: Each A feeds into each MUX connecting to B; into input
(j-1) mod 4

Barrel Shifter Design with wraparound (using MUXS)
A A

|
I
3 1 0

|
'2
MUX

B3 Bo

e Basic form of design: Each A feeds into each MUX connecting to B; into input
(j-1) mod 4

e Selector is 10 (i.e., 2 binary):

e cach MUX entry 2 is selected

e Ao flows into the ‘2’ input of the MUX whose output is B2

Barrel Shifter Design with wraparound (using MUXS)

Ba

e Basic form of design: Each A feeds into each MUX connecting to B; into input
(j-1) mod 4

e Selector is 10 (i.e., 2 binary):

e cach MUX entry 2 is selected

e B3 B>B1Bo=A1 Ac Az A2

R Shift w/ Rollout

e

Ba

¢ Basic form of design:
e 0 & 1 MUX selectors (S1 = 0) feed Ai to B
e 2 MUX selector feeds from left (Bi = Ai-1), 3 MUX from right (Bi = Ai+1)

e Note O feeds (0’s roll in when bits rollout)

R Shift w/ Rollout

Ba

¢ Basic form of design:
e 0 & 1 MUX selectors (S1 = 0) feed Ai to B
e 2 MUX selector feeds from left (Bi = Ai-1), 3 MUX from right (Bi = Ai+1)

e Note O feeds (0’s roll in when bits rollout)

