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Terminology

e Recall: Digital / Binary / Boolean: 0 = False, 1 = True

e Binary Variable: a symbolic representation of a value that might be 0 or 1,
eg., X Y,AB

e Complement (e.qg., of a variable X): written X : the opposite value of X
X | X
O]
110

e |iteral: a boolean variable or its complement (e.g., X, X,




Boolean Logic

e All logical functions can be implemented in terms of three logical operations:




Soolean Logic 2

e Precedence rules just like decimal system
e Implied precedence: NOT > AND > OR

e Use parentheses as necessary

AB + C sare as (AB) + C

(A + BC same as (A + B




Terminology cont’d

e Expression: a set of literals (possibly with repeats) combined with logic
operations (and possibly ordered by parentheses)

* e.g., 4 expressions: 42 + C, (AB + C, (A + BC, (A + BC

e Note: can compliment expressions, too, e.g., (CA) + B)C
e Equation: expression1 = expression2

ceg. (A + BC = (A + B

e Function of (possibly several) variables: an equation where the lefthand side is
defined by the righthand side TN
ned by e g HABC = (A + BC




Boolean Logic: Example

Truth Table: all combinations of input variables
k variables =¥ 2% input combinations
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Boolean Logic: Example




BSoolean Logic:

—xample 2




Boolean Algebra: Identities and Theorems

OR AND NOT
X+0 = X X1 =X (identity)

X+1 = 1 X0 =0 (null)

X4X = X XX = X (idempotent)

X+—X— =1 XX =0 (complementarity)

(involution)

X+Y = Y+X XY =YX (commutativity)

X+(Y+2) = (X+Y)+Z X(YZ) = (XY)Z (associativity)

X+YZ = (X+Y)(X+2) (distributive)

XYY=X+Y (DeMorgan’s theorem)




Boolean Algebra: Example

Simplify this equation using algebraic manipulation.




Boolean Algebra: Example

Simplify this equation using algebraic manipulation.

F=XYZ + XYZ + XZ

;Y(Z -+ Z > + X2 (Ay reverse dis Z(/‘/‘AL(Z‘/‘O/»

T(Yl + X2 ( Ay COMP/ eMenZ‘ar/‘Z‘y>

?Y + X2 (Ay /‘a/enf/"éy>




Soolean Algebra: Example 2

Find the complement of F.

F=AB + AB
E




Soolean Algebra: Example 2

Find the complement of .

F=AB + AB

F=AB + A2

(AB) (AB) (by DeMorgan 's)

(Z +=3> (7 -+ E> (Ay De/‘//orgdn \5>

(Z -+ B> (4 -+ E> (Ay /‘h\/O/L(Z(/‘OI»




DeMorgan’s Theorem

¢ Procedure for complementing expressions

e Remove the “big bar” over AND or OR of 2 (or more) functions
(e.g., F & G) and replace...

e AND with OR, OR with AND
e 1 with O, O with 1

e function F with F F with F




DeMorgan’s Practice

ABC + ACD + BC




DeMorgan’s Practice

ABC + ACD + BC F= AZC, G = ACD, ¥/ = BT, FG] = F

= (457@>( ACDX 375> (ABCY (ACD) = ABCD, F = B, G = C, G = F+G

=(ABCDX B+C)
=ABCD + ABCD
= ABCD




Circuit Representation

¢ Information flows from left to right

e Input(s) all the way on the left, output(s) on the right

ko z-%

NOT gate or
inverter

These circuits consume area, power, and time

Goal: minimize the amount of circuitry to compute the desired function 18



We simplify to reduce required circuitry...

F=XYZ + XYZ + XZ

;Y(Z -+ Z > + X2 (Ay reverse dis Z(/‘/‘AL(Z‘/‘O/'»

T(Yl + X2 ( Ay COMP/ eMenZ‘ar/‘Z‘y>

T(Y + X2 (Ay /‘a/enf/"éy>




Circuit view

wire connector: black dot signifies wires are connected
Do
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(a) F=XYZ + XYZ + XZ
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(b) F = XY + XZ




Universal gates: NAN

Dt
Note: the “o” In a circuit
represents a NOT (inverter)

Different from “®” which
represents wire connector

\,




NAN

D and NO

R universal because...

e NOT, AND, OR can each be implemented using only NAND gates

e NOT, AND, OR can each be implemented using only NOR gates

A = A nanp A A=A nor A

AB = A nano B A+B = A nor B

A+B = A nao B AB = A nor B




uals




uals

¢ All boolean expressions have duals

e Any theorem you can prove, you can also prove for its dual

e To form a dual...

e replace AND with OR, OR with AND

¢ replace 1 with 0, O with 1




What is the dual of this expression?




What is the dual of this expression®?




What are the complements of these expressions??

)
)




What are the complements of these expressions??




These are also the duals of one another.

XY =X+Y X +Y = XY

Note: to complement a function, compute its dual
and complement literals




“Complement using Dual” example

eF=X+AZ+X{Y+W)+Y (Z+W)
e Dual: Fquai = X (A +Z (X + YW)(Y + ZW))

o F=X(A+Z(X+YW)Y +ZW))




Can be used for gate manipulation.




Converting circuits to all-NAND (or all-NOR)

e \Work from right to left

e \When manipulating an (AND or OR) gate, stick in pairs of NOT gates to get it
In “appropriate” form

e |solated NOT gates are easily implemented as a NAND (NOR) gate

DeMorgan

e example manipulations (for NAND gates)

—=> —] P




Convert-to-all-NAND example

D_




Convert-to-all-NAND example

D_




XOR: the parity operation

e X®Y =XY + XY

® In general, represents parity, I.e.,

e X1 ®Xo® X3 @ ... ® Xk =1 when an odd number of X = 1




Standard

—OrNMms




Standard Forms

® There are many ways to express a boolean expression
F=XYZ + XYZ + XZ
=XY(Z + 2) + XZ
=XY + XZ

e |t is useful to have a standard or canonical way
e Derived from truth table

e Generally not the simplest form




Two principle standard forms

e Sum-of-products (SOP)

¢ Product-of-sums (POS)




Terminology

e Product term: logical AND of literals (e.g., XYZ)

e Sum term: logical OR of literals (e.g., A + B + C)




PoS & SoP

e Sum of products (SoP): OR of ANDs

e.g.,,F=Y + XYZ + XY

¢ Product of sums (PoS): AND of ORs

e.g.,G=XY +2X+Y + 2




P0S and SoP not always simplest form

e e.9.,, F=ABD + ABE + C(D+E)
e (AB+C) (D+E) is simplest (fewest literals) form (5 literals)
e know it’s simplest because each literal appears only once
e simplest SoP form: ABD + ABE + CD + CE (10 literals)
e simplest PoS form: (A+C)(B+C)(D+E) is (6 literals)




Converting from PoS (or any form) to So

Just multiply through and simplify, e.q.,

G=XY+2)X+Y + 2
= XYX + XYY 4+ XYZ + XZX + XZY + XZ/
= XY + XY + XYZ + XZ + XZY + XZ

= XY + X/




Converting from SoP to PoS

Complement, multiply through, complement via DeMorgan, e.q.,

Note: X' =X

F=Y'Z + XY'Z + XYZ
F' = (Y+2) )X +Y+2) (X +Y +2)
—YZ + XY +XZ (after lots of simplification)

F = (Y+2Z)X+Y")(X+2))




Minterms

e.q., Minterms for 3 variables A,B,C

minterm
e A product term in which all variables
appear once, either complemented or
uncomplemented (i.e., an entry in the
truth table).

e Each minterm evaluates to 1 for
exactly one variable assignment, O for
all others.

e Denoted by mX where X corresponds

to the variable assignment for which
mX = 1.




Minterms to describe a function

sometimes also called a minterm expansion or disjunctive normal form (DNF)

This “term” is TRUE when

v/ A=0,B=1,C=0

=

ABC + ABC + ABC

BC + A

= BC
1

l

A
0
0
O
0
1
1
1
1
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Minterm example, seen another way

The logical OR of all minterms for which F = 1.

3
On
y,

minterm

o

+ 4+ 4+ 4+ + + + o+




Minterm example, conclusion

(variables appear once in each minterm)

minterm

F = ABC + ABC + ABC + ABC + ABC
m

O+ml+m2+m4 +mb
Ym(0,1,2,4,5)

F = ABC + ABC + ABC
=m3+mMb+m7/
= >mM(3,6,7)




Minterms as a circuit

F =ABC + ABC + ABC + ABC + ABC
m

O+ml+m2+m4 +mb

Ym(0,1,2,4,5)

Standard form is
not minimal form!




Simplest Standard Form v. Minimal Form

e Can be the same, but not always
¢ e.g., F=WX(Y+2) ¢ e.g., F=WX(YZ+Y2)
e SOP form: WXY + WXZ ¢ SoP form: WXYZ + WXYZ

e Minterm form: WXYZ + WXYZ + WXYZ e Minterm form: WXYZ + WXYZ




Maxterms

maxterm ) : )
e A sum term in which all variables

MO A+B+C appear once, either complemented or

_ uncomplemented.
M1 A+B+C

M2 e Each maxterm evaluates to 0 for

M3 exactly one variable assignment, 1 for

all others.
M4

M5 e Denoted by MX where X corresponds

M6 A+B+C to the variable assignment for which
MX = 0.

M7 A+B+C




Maxterm description of a function

sometimes also called a maxterm expansion or conjunctive normal form (CNF)

This “term” is FALSE when
ﬁAﬂ ,B=1,C=0

F = (A+B+C) (A+B+C) (A+B+C)

Force 10 O

A
0
0
0
0
1
1
1
1
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Maxterm example, seen another way

The logical AND of all maxterms for which F = Q.

maxterm
MO
M1
M2
M3
M4
M5
M6 A+B+C

M7 A+B+C




Maxterm example, conclusion

The logical AND of all maxterms for which F = Q.

maxterm

MO

M1 F = (A+B+C) (A+B+C) (A+B+C)

M2 — (M3) (M6) (M7)

M3

[IM(3,6,7)

M4

M5

M6




Summary of Minterms and Maxterms
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Converting between canonical forms
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Minterms
(SOP)
Maxterms
(POS)
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Relations between standard forms

sum of minterms

J

J

\_

sum of products ” product of sums

DeMorgan’s _
F ———> F

\_

oroduct of maxterms

J

all boolean expressions




Circuit Simplification with Karnaugh Maps




Karnaugh maps (a.k.a., K-maps)

e All functions can be expressed with a map

e There is one square in the map for each minterm in a function’s truth table

Y




Karnaugh maps

¢ All functions can be expressed with a map

e There is one square in the map for each minterm in a function’s truth table

Y




Karnaugh maps

¢ All functions can be expressed with a map

e There is one square in the map for each minterm in a function’s truth table

Y




Karnaugh maps express functions

¢ Fill out table with value of a function




Simplification using a k-map

¢ \Whenever two squares share an edge and both are 1, those two terms can be
combined to form a single term with one less variable

Y

uy
+ XY




Simplification using a k-map (2)

e Circle contiguous groups of 1s (circle sizes must be a power of 2)

e There is a correspondence between circles on a k-map and terms in a
function expression

e The bigger the circle, the simpler the term

e Add circles (and terms) until all 1s on the k-map are circled




3-variable Karnaugh maps

e Use gray ordering on edges with multiple variables

e Gray encoding: order of values such that only one bit changes at a time

e Two minterms are considered adjacent if they differ in only one variable (this

means maps “wrap”)

Y/
00

01

MmO

XYZ

m-

XYZ

m4

XYZ

m>

XYZ

/=1



4-variable Karnaugh maps

Extension of 3-variable maps

WXYZ or W4X+Y+Z




Implicants

e Implicant: a product term, which, viewed in a K-Map is a 2' x 2! size
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y Z Y Z

Y Y

WX 00 01 11 10 WX o0 01 11 10

m3

m/




Implicants

e Implicant: a product term, which, viewed in a K-Map is a 2' x 2! size
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y Z Y Z

Y Y

WX o0 01 11 10 WX o0 01 11 10

WY =" R —
WXY

Note: bigger rectangles = fewer literals
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4-variable Karnaugh map example

w
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
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Y Z
WX 00

K-maps make F expressed as SOP easy to see, e.g.,

Y + WYZ + WXYZ

Can the expression for F be simplified further?




4-variable Karnaugh map example

Y + WZ + XZ

w
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
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1O =121 =2|O|=]O|l=]|O|—=|O|—~]|O|N
oOlol=]|=lOl=~=w]—~]—~2]lOl—=]l=1=1lOl=1=1—=1mT

Rule when picking product terms: Must cover only 1’s, but
OK to overlap. Bigger rectangles are better (fewer literals)

71




More implicant terminology

e implicant: a product term, which, viewed in a K-Map is a 2' x 2! size
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

e prime implicant:. An implicant not contained within another implicant.

e essential prime implicant: a prime implicant that is the only prime
implicant to cover some minterm.




4-variable Karnaugh maps (3)

e List all of the prime implicants for this function
¢ |s any of them an essential prime implicant?

e \What is a simplified expression for this function?

Y Z .
WX 00 01 11 10




Using K-maps to build simplified circuits

e Step 1: Identify all Pls and essential Pls
e Step 2: Include all Essential Pls in the circuit (Why?)

e Step 3: If any 1-valued minterms are uncovered by EPIs, choose Pls that are
“big” and do a good job covering

e Selection Rule: a heuristic for usually choosing “good” Pls: choose the Pls
that minimize overlap with one another and with EPIs




Using K-maps to build simplified circuits

e Step 1: Identify all Pls and essential Pls
e Step 2: Include all Essential Pls in the circuit (Why?)

e Step 3: If any 1-valued minterms are uncovered by EPIs, choose Pls that are
“big” and do a good job covering

e Selection Rule: a heuristic for usually choosing “good” Pls: choose the Pls
that minimize overlap with one another and with EPIs

Red bounds are EPIs (solo-covered
minterm shown in red)

Also need
(purple or blue) and All blue Pls or all
(yellow or green) green Pls cover

1M




Design example : 2-bit multiplier

two 2-bit #s multiplied together to give a 4-bit solution

e.q., arao =10, bibo = 11, 232271720 = 0110

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1




K-Maps: Complements, PoS, don’t care conditions




Finding F

Find prime implicants corresponding to the 0s on a k-map

\ @4 \ 4
WX

F =YZ + WXY




P0S expressions from a k-map

Find F as SoP and then apply DeMorgan’s

=Y+ X+ YX
DeMorgan’s
= (Y+I)(Z+X)(Y+X)




Don’t care conditions

There are circumstances in which the value of an output doesn’t matter

For example, in that 2-bit multiplier, what if we are told
that a and b will be non-0? We “don’t care” what the
output looks like for the input cases that should not
occur

Don’t care situations are denoted by an “X” in a truth
table and in Karnaugh maps.

0
0
0
0
0
0
0
0

Can also be expressed in minterm form:

Ol X|O|O|O|I XX X]|X]|X

During minimization can be treated as eithera1ora0

—

—_

72 = sm(10,11,14)
d2 = sm(0,1,2,3,4,8,12)

O|lOI X]|O]JO|OI X]JOIO1O0OI XIXIX]|I XX
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Simple Don’t Care Example

e Let F = AB + AB
e Suppose we know that a disallowed input combo is A=1, B=0

e Can we replace F with a simpler function G whose output matches for all
inputs we do care about?

¢ | et H be the function with Don’t-care conditions for obsolete inputs

Inputs will
Not occur\

e Both F & G are appropriate functions for H
e G can substitute for F for valid input combinations




(vs. araob1 + a1b1bo)

1

7o = a1bo + agb1

1’s must be covered
O’s must not be covered

X’s are optionally covered

a1ao0b1bo

Do
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2-bit multiplier non-0 multiplier (SOLUTION)

o
O

Still have prime and
essential prime implicants
= (exercise)

O\

1

All above prime implicants
are essential

0
O
0
0
O
O
O
O
1
1
1
1
1
1
1
1
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Final thoughts on Don’t care conditions

Sometimes “don’t cares” greatly simplify circuitry

D

X
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iming, Glitches, and Hazards




Timing

There is a delay between changes in circuit input and the output changing in
response

The challenge is to build fast circuits

Delay is caused by

Capacitance and resistance in a circuit

Speed of light limitation

>

Copyright © 2007 Elsevi




Propagation and Contamination Delay

Propagation delay: tpd = max delay from input to output

Contamination delay: tcd = min delay from input to output

Reasons why tpd and tcd may
be different:

Different rising and falling delays

Multiple inputs and outputs, some
of which are faster than others

Circuits slow down when hot and
speed up when cold

Copyright © 2007 Elsevi




Critical (Long) and Short

Paths

Critical Path

n1

Short Path

Critical (Long) Path: ¢,, =2t ; s\xp T 4,4 or
Short Path: z_, = fed AND




Glitches

e Glitch: when a single input change causes multiple output changes

e Glitches don’t cause problems because of synchronous design conventions
(which we’ll talk about in a bit)

e But it’s important to recognize a glitch when you see one in timing diagrams

e Example: what happens when A=0, i
C=1, and B falls?

b

y = AB + BC Copyright © 2007 Elsevi




Glitches

—xample (cont.)

Critical Path

0—->1

n1

n2
1->0

Y=1>0->1

Copyright © 2007 Elsevi




Fixing the Glitch

11 10

0

B

Y=AB +BC + AC

NB: Can’t get rid of all glitches —
simultaneous transitions on multiple
Inputs can also cause glitches

Copyright © 2007 Elsevier




