
CSEE 3827: Fundamentals of Computer Systems, 
Spring 2011

2. Boolean Logic & Algebra

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/


Contents (H&H 2.1-2.7, 2.9)

• Simplification via Karnaugh Maps (K-
maps)

• 2, 3, and 4 variable

• Implicants, Prime Implicants, Essential 
Prime Implicants

• Using K-maps to reduce

• PoS form

• Don’t Care Conditions

•

2

• Boolean Algebra

• AND, OR, NOT

• DeMorgan’s

• Duals

• Logic Gates

• NAND, NOR, XOR

• Standard Forms

• Product-of-Sums (PoS)

• Sum-of-Products (SoP)

• conversion between

• Min-terms and Max-terms



Terminology

X X

0 1

1 0

3

• Recall: Digital / Binary / Boolean: 0 = False, 1 = True

• Binary Variable: a symbolic representation of a value that might be 0 or 1, 
e.g., X, Y, A, B

• Complement (e.g., of a variable X): written X : the opposite value of X

• Literal: a boolean variable or its complement (e.g., X, X, Y)



Boolean Logic 

x x

0 1
1 0

x y x y

0 0 0
0 1 0
1 0 0
1 1 1

. x y x + y

0 0 0
0 1 1
1 0 1
1 1 1

NOT AND OR

4

can omit the “⋅”

• All logical functions can be implemented in terms of three logical operations:



Boolean Logic 2

5

AB + C same as (AB) + C

(A + B)C same as ((A) + B)C

• Precedence rules just like decimal system

• Implied precedence: NOT > AND > OR

• Use parentheses as necessary



Terminology cont’d

AB + C, (AB) + C, (A + B)C,  ((A) + B)C

(A + B)C = ((A) + B)C

F(A,B,C) = ((A) + B)C           

  ((A) + B)C

6

• Expression: a set of literals (possibly with repeats) combined with logic 
operations (and possibly ordered by parentheses)

• e.g., 4 expressions:

• Note: can compliment expressions, too, e.g.,  

• Equation: expression1 = expression2

• e.g., 

• Function of (possibly several) variables: an equation where the lefthand side is 
defined by the righthand side



Boolean Logic: Example

D X A DX + A

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
7

Truth Table: all combinations of input variables
k variables ➜ 2k input combinations 



Boolean Logic: Example

D X A X DX DX + A

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 0 0 1

(M&K Table 2-2) 8



Boolean Logic: Example 2

X Y XY + XY

0 0

0 1

1 0

1 1

9



Boolean Algebra: Identities and Theorems

OR AND NOT

X+0 = X X1 = X (identity)

X+1 = 1 X0 = 0 (null)

X+X = X XX = X (idempotent)

X+X = 1 XX = 0 (complementarity)

X = X (involution)

X+Y = Y+X XY = YX (commutativity)

X+(Y+Z) = (X+Y)+Z X(YZ) = (XY)Z (associativity)

X(Y+Z) = XY + XZ X+YZ = (X+Y)(X+Z) (distributive)

X+Y = X Y XY = X + Y (DeMorgan’s theorem)

10



Boolean Algebra: Example

F = XYZ + XYZ + XZ

Simplify this equation using algebraic manipulation.

11



Boolean Algebra: Example

F = XYZ + XYZ + XZ

XY(Z + Z) + XZ (by reverse distribution)

XY1 + XZ (by complementarity)

XY + XZ (by identity)

Simplify this equation using algebraic manipulation.

12



Boolean Algebra: Example 2

F = AB + AB

F =

Find the complement of F.

13



Boolean Algebra: Example 2

F = AB + AB

F = AB + AB

(AB) (AB) (by DeMorgan’s)

(A + B) (A + B) (by DeMorgan’s)

(A + B) (A + B) (by involution)

Find the complement of F.

14



DeMorgan’s Theorem

FG = F + G

F + G = FG

• Procedure for complementing expressions

• Remove the “big bar” over AND or OR of 2 (or more) functions 
(e.g., F & G) and replace...

• AND with OR, OR with AND

• 1 with 0, 0 with 1

• function F with F,  F with F



DeMorgan’s Practice

ABC + ACD + BC



DeMorgan’s Practice

ABC + ACD + BC

= (ABC)(ACD)(BC)
= (ABCD)(B+C)
= ABCD + ABCD
=ABCD

F = ABC, G = ACD, H = BC, F+G+H = F G H

 (ABC) (ACD) = ABCD, F = B, G = C, FG = F+G



Circuit Representation

These circuits consume area, power, and time

Goal: minimize the amount of circuitry to compute the desired function 18

• Information flows from left to right

• Input(s) all the way on the left, output(s) on the right



We simplify to reduce required circuitry...

F = XYZ + XYZ + XZ

XY(Z + Z) + XZ (by reverse distribution)

XY1 + XZ (by complementarity)

XY + XZ (by identity)

19



Circuit view

20

wire connector: black dot signifies wires are connected



Universal gates: NAND, NOR

x y z = xy

0 0 1
0 1 1
1 0 1
1 1 0

XY

x y z = x+y

0 0 1
0 1 0
1 0 0
1 1 0

X+Y

21

Note: the “o” in a circuit 
represents a NOT (inverter)

Different from “ ” which 
represents wire connector



NAND and NOR universal because...

A = A NAND A A = A NOR A

AB = A NAND B A+B = A NOR B

A+B = A NAND B AB = A NOR B

22

• NOT, AND, OR can each be implemented using only NAND gates

• NOT, AND, OR can each be implemented using only NOR gates



Duals



Duals 

• All boolean expressions have duals

• Any theorem you can prove, you can also prove for its dual

• To form a dual...

• replace AND with OR, OR with AND

• replace 1 with 0, 0 with 1



What is the dual of this expression?

X + Y = XY



What is the dual of this expression?

X + Y = XY

XY = X + Y

du
al



What are the complements of these expressions?

X + Y = XY

XY = X + Y

du
al

complement

complement



What are the complements of these expressions?

X + Y = XY

XY = X + Y

du
al

complement

complement X + Y = XY

XY = X + Y



These are also the duals of one another.

X + Y = XY

XY = X + Y

du
al

complement

complement X + Y = XY

XY = X + Y

du
al

Note: to complement a function, compute its dual 
and complement literals



“Complement using Dual” example

30

• F = X + A (Z + X (Y + W) + Y (Z + W))

• Dual: Fdual =  X (A + Z (X + YW)(Y + ZW))

• F = X (A + Z (X + YW)(Y + ZW))



Can be used for gate manipulation.

X + Y = XY

XY = X + Y X + Y = XY

XY = X + Y



Converting circuits to all-NAND (or all-NOR)

DeMorgan

32

• Work from right to left

• When manipulating an (AND or OR) gate, stick in pairs of NOT gates to get it 
in “appropriate” form

• Isolated NOT gates are easily implemented as a NAND (NOR) gate

• example manipulations (for NAND gates)



Convert-to-all-NAND example

X
Y
Z

33



Convert-to-all-NAND example

X
Y
Z

X
Y
Z

#1

#2

#2

Each “o” by itself represents a NOT gate

34



XOR: the parity operation

X Y X ⊕ Y

0 0 0
0 1 1
1 0 1
1 1 0

35

• X ⊕ Y = XY + XY

• In general, represents parity, i.e.,

• X1 ⊕ X2 ⊕ X3 ⊕ ... ⊕ Xk = 1 when an odd number of Xi = 1



Standard Forms



Standard Forms

• There are many ways to express a boolean expression

• It is useful to have a standard or canonical way

• Derived from truth table

• Generally not the simplest form

F = XYZ + XYZ + XZ
= XY(Z + Z) + XZ
= XY + XZ



Two principle standard forms

• Sum-of-products (SOP)

• Product-of-sums (POS)



Terminology

39

• Product term:  logical AND of literals (e.g., XYZ)

• Sum term: logical OR of literals (e.g., A + B + C)



PoS & SoP

• Sum of products (SoP): OR of ANDs

• Product of sums (PoS): AND of ORs

40

e.g., F = Y + XYZ + XY

e.g., G = X(Y + Z)(X + Y + Z)



PoS and SoP not always simplest form

• e.g., F = ABD + ABE + C(D+E)

• (AB+C) (D+E) is simplest (fewest literals) form (5 literals)

• know it’s simplest because each literal appears only once

• simplest SoP form: ABD + ABE + CD + CE  (10 literals)

• simplest PoS form: (A+C)(B+C)(D+E) is (6 literals)

41



Converting from PoS (or any form) to SoP

Just multiply through and simplify, e.g., 

42

G = X(Y + Z)(X + Y + Z)

= XYX + XYY + XYZ + XZX + XZY + XZZ

= XY + XY + XYZ + XZ + XZY + XZ

= XY + XZ



Converting from SoP to PoS

Complement, multiply through, complement via DeMorgan, e.g., 

43

F = Y’Z’ + XY’Z + XYZ’

F' = (Y+Z)(X’+Y+Z’)(X’+Y’+Z)

= YZ + X’Y + X’Z     (after lots of simplification)

F = (Y’+Z’)(X+Y’)(X+Z’)

Note: X’ = X



Minterms

• A product term in which all variables 
appear once, either complemented or 
uncomplemented (i.e., an entry in the 
truth table).

• Each minterm evaluates to 1 for 
exactly one variable assignment, 0 for 
all others.

• Denoted by mX where X corresponds 
to the variable assignment for which 
mX = 1.

44

A B C minterm

0 0 0 m0   ABC

0 0 1 m1   ABC

0 1 0 m2   ABC

0 1 1 m3   ABC

1 0 0 m4   ABC

1 0 1 m5   ABC

1 1 0 m6   ABC

1 1 1 m7  ABC

e.g., Minterms for 3 variables A,B,C



Minterms to describe a function

sometimes also called a minterm expansion or disjunctive normal form (DNF)

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = ABC + ABC + ABC + ABC + ABC

F = ABC + ABC + ABC

This “term” is TRUE when 
A=0,B=1,C=0



The logical OR of all minterms for which F = 1.

Minterm example, seen another way

46

A B C minterm F m0 m1 m2 m3 m4 m5 m6 m7

0 0 0 m0   ABC 1 1 0 0 0 0 0 0 0

0 0 1 m1   ABC 1 0 1 0 0 0 0 0 0

0 1 0 m2   ABC 1 0 0 1 0 0 0 0 0

0 1 1 m3   ABC 0 0 0 0 1 0 0 0 0

1 0 0 m4   ABC 1 0 0 0 0 1 0 0 0

1 0 1 m5   ABC 1 0 0 0 0 0 1 0 0

1 1 0 m6   ABC 0 0 0 0 0 0 0 1 0

1 1 1 m7  ABC 0 0 0 0 0 0 0 0 1

+    +

+    +

+    +

+    +

+    +

+    +

+    +

+    +

+   

+   

+   

+   

+   

+   

+   

+   



Minterm example, conclusion

A B C F F minterm

0 0 0 1 0 m0   ABC

0 0 1 1 0 m1   ABC

0 1 0 1 0 m2   ABC

0 1 1 0 1 m3   ABC

1 0 0 1 0 m4   ABC

1 0 1 1 0 m5   ABC

1 1 0 0 1 m6   ABC

1 1 1 0 1 m7  ABC

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

F = ABC + ABC + ABC

= m3 + m6 + m7

= ∑m(3,6,7)

(variables appear once in each minterm)



Minterms as a circuit

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

A B C

F

Standard form is 
not minimal form!



Simplest Standard Form v. Minimal Form

• Can be the same, but not always

• e.g., F = WX (Y+Z)

• SoP form: WXY + WXZ

• Minterm form: WXYZ + WXYZ + WXYZ

• e.g., F = WX (YZ + YZ) 

• SoP form: WXYZ + WXYZ

• Minterm form: WXYZ + WXYZ



Maxterms

50

A B C maxterm

0 0 0 M0   A+B+C

0 0 1 M1   A+B+C

0 1 0 M2   A+B+C

0 1 1 M3   A+B+C

1 0 0 M4   A+B+C

1 0 1 M5   A+B+C

1 1 0 M6   A+B+C

1 1 1 M7  A+B+C

• A sum term in which all variables 
appear once, either complemented or 
uncomplemented.

• Each maxterm evaluates to 0 for 
exactly one variable assignment, 1 for 
all others.

• Denoted by MX where X corresponds 
to the variable assignment for which 
MX = 0.



Maxterm description of a function

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = (A+B+C) (A+B+C) (A+B+C)

Force to 0

This “term” is FALSE when 
A=1,B=1,C=0

sometimes also called a maxterm expansion or conjunctive normal form (CNF)



The logical AND of all maxterms for which F = 0.

Maxterm example, seen another way

52

A B C maxterm F M0 M1 M2 M3 M4 M5 M6 M7

0 0 0 M0   A+B+C 1 0 1 1 1 1 1 1 1

0 0 1 M1   A+B+C 1 1 0 1 1 1 1 1 1

0 1 0 M2   A+B+C 1 1 1 0 1 1 1 1 1

0 1 1 M3   A+B+C 0 1 1 1 0 1 1 1 1

1 0 0 M4   A+B+C 1 1 1 1 1 0 1 1 1

1 0 1 M5   A+B+C 1 1 1 1 1 1 0 1 1

1 1 0 M6   A+B+C 0 1 1 1 1 1 1 0 1

1 1 1 M7  A+B+C 0 1 1 1 1 1 1 1 0



The logical AND of all maxterms for which F = 0.

F = (A+B+C) (A+B+C) (A+B+C) 

= (M3) (M6) (M7)

= ∏M(3,6,7)

Maxterm example, conclusion

53

A B C maxterm F

0 0 0 M0   A+B+C 1

0 0 1 M1   A+B+C 1

0 1 0 M2   A+B+C 1

0 1 1 M3   A+B+C 0

1 0 0 M4   A+B+C 1

1 0 1 M5   A+B+C 1

1 1 0 M6   A+B+C 0

1 1 1 M7  A+B+C 0



Summary of Minterms and Maxterms

F F

Minterms
(SOP)

∑m(F = 1) ∑m(F = 0)

Maxterms
(POS)

∏M(F = 0) ∏M(F = 1)



Converting between canonical forms

DeMorgans: same terms

F F

Minterms
(SOP)

∑m(F = 1) ∑m(F = 0)

Maxterms
(POS)

∏M(F = 0) ∏M(F = 1)



One final example

A B C F F

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

F F
Minterms

(SOP)

Maxterms
(POS)



Relations between standard forms

57

all boolean expressions

sum of products

sum of minterms

product of sums

product of maxterms

F F
DeMorgan’s



Circuit Simplification with Karnaugh Maps



Karnaugh maps (a.k.a., K-maps)

• All functions can be expressed with a map

• There is one square in the map for each minterm in a function’s truth table

59

X Y F

0 0 m0

0 1 m1

1 0 m2

1 1 m3

0 1

0
m0
XY

m1
XY

1
m2
XY

m3
XY

Y
X



Karnaugh maps

• All functions can be expressed with a map

• There is one square in the map for each minterm in a function’s truth table

60

X Y F

0 0 m0

0 1 m1

1 0 m2

1 1 m3

0 1

0
m0
XY

m1
XY

1
m2
XY

m3
XY

Y
X

X=0 (X)

X=1 (X)



Karnaugh maps

• All functions can be expressed with a map

• There is one square in the map for each minterm in a function’s truth table

61

X Y F

0 0 m0

0 1 m1

1 0 m2

1 1 m3

0 1

0
m0
XY

m1
XY

1
m2
XY

m3
XY

Y
X

Y=0 (Y) Y=1 (Y)



Karnaugh maps express functions

• Fill out table with value of a function 

62

X Y F

0 0 0

0 1 1

1 0 1

1 1 1

0 1

0 0 1

1 1 1

Y
X



Simplification using a k-map

• Whenever two squares share an edge and both are 1, those two terms can be 
combined to form a single term with one less variable

63

0 1

0 0 1

1 1 1

Y
X

F = XY + XY + XY

0 1

0 0 1

1 1 1

Y
X

F = Y + XY 

0 1

0 0 1

1 1 1

Y
X

F = X + XY 

0 1

0 0 1

1 1 1

Y
X

F = X + Y



Simplification using a k-map (2)

• Circle contiguous groups of 1s (circle sizes must be a power of 2)

• There is a correspondence between circles on a k-map and terms in a 
function expression

• The bigger the circle, the simpler the term

• Add circles (and terms) until all 1s on the k-map are circled

64

0 1

0 0 1

1 1 1

Y
X

F = X + Y



3-variable Karnaugh maps

• Use gray ordering on edges with multiple variables

• Gray encoding: order of values such that only one bit changes at a time

• Two minterms are considered adjacent if they differ in only one variable (this 
means maps “wrap”)

65

Y=1
0 0 0 1 1 1 1 0

0
m0
XYZ

m1
XYZ

m3
XYZ

m2
XYZ

X=1 1
m4
XYZ

m5
XYZ

m7
XYZ

m6
XYZ

Z=1

Y Z

X



4-variable Karnaugh maps

66

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

Extension of 3-variable maps

WXYZ or W+X+Y+Z



Implicants

67

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

• Implicant: a product term, which, viewed in a K-Map is a 2i x 2j size 
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX



Implicants

67

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

• Implicant: a product term, which, viewed in a K-Map is a 2i x 2j size 
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

WY

WZ

WXY
WXYZ W

WX

WXZ

Note: bigger rectangles = fewer literals



4-variable Karnaugh map example

68

Y
0 0 0 1 1 1 1 0

0 0

0 1
X

W
1 1

1 0

Z

Y Z
WX

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0



4-variable Karnaugh map example

69

Y
0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1
X

W
1 1 1 1 0 0

1 0 1 1 0 1

Z

Y Z
WX

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0



4-variable Karnaugh map example

70

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

Y
0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1
X

W
1 1 1 1 0 0

1 0 1 1 0 1

Z

Y Z
WX

Y + WYZ + WXYZ
Can the expression for F be simplified further?

K-maps make F expressed as SoP easy to see, e.g.,



4-variable Karnaugh map example

71

Y
0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1
X

W
1 1 1 1 0 0

1 0 1 1 0 1

Z

Y Z
WX

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0 Rule when picking product terms: Must cover only 1’s, but 
OK to overlap.  Bigger rectangles are better (fewer literals)

Y + WZ + XZ



More implicant terminology

• implicant: a product term, which, viewed in a K-Map is a 2i x 2j size 
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

• prime implicant: An implicant not contained within another implicant.

• essential prime implicant: a prime implicant that is the only prime 
implicant to cover some minterm.

72



• List all of the prime implicants for this function

• Is any of them an essential prime implicant?

• What is a simplified expression for this function?

4-variable Karnaugh maps (3)

73

Y
0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 1 1 1 0
X

W
1 1 0 1 1 1

1 0 0 1 0 0

Z

Y Z
WX



Using K-maps to build simplified circuits	

74

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 1 1 0

0 1 1 0

1 1 1 1

1 1 0 1

• Step 1: Identify all PIs and essential PIs

• Step 2: Include all Essential PIs in the circuit (Why?)

• Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are 
“big” and do a good job covering

• Selection Rule: a heuristic for usually choosing “good” PIs: choose the PIs 
that minimize overlap with one another and with EPIs



Using K-maps to build simplified circuits	

75

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0

0 1 1 1

1 1 1 1

1 1 0 0

Red bounds are EPIs (solo-covered 
minterm shown in red)

Also need 
(purple or blue) and 

(yellow or green)

No EPIs!No EPIs!

All blue PIs or all 
green PIs cover

• Step 1: Identify all PIs and essential PIs

• Step 2: Include all Essential PIs in the circuit (Why?)

• Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are 
“big” and do a good job covering

• Selection Rule: a heuristic for usually choosing “good” PIs: choose the PIs 
that minimize overlap with one another and with EPIs



Design example : 2-bit multiplier

76

a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

two 2-bit #’s multiplied together to give a 4-bit solution

e.g., a1a0 = 10, b1b0 = 11, z3z2z1z0 = 0110



K-Maps: Complements, PoS, don’t care conditions



Finding F

Find prime implicants corresponding to the 0s on a k-map

78

0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 1 1 0 1

Y Z
WX 0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 1 0

1 1 0 0 1 1

1 0 0 0 1 0

Y Z
WX

F = Y + XZ + WZ F = YZ + WXY



PoS expressions from a k-map

Find F as SoP and then apply DeMorgan’s

79

0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 0 0 0

1 1 1 0 0 0

1 0 1 1 0 1

Y Z
WX

F = YZ + XZ + YX

DeMorgan’s

F = (Y+Z)(Z+X)(Y+X)



Don’t care conditions

There are circumstances in which the value of an output doesn’t matter

80

a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0 X X X X

0 0 0 1 X X X X

0 0 1 0 X X X X

0 0 1 1 X X X X

0 1 0 0 X X X X

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 X X X X

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 X X X X

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

• For example, in that 2-bit multiplier, what if we are told 
that a and b will be non-0? We “don’t care” what the 
output looks like for the input cases that should not 
occur

• Don’t care situations are denoted by an “X” in a truth 
table and in Karnaugh maps.

• Can also be expressed in minterm form:

• During minimization can be treated as either a 1 or a 0

z2 =  ∑m(10,11,14)
d2 = ∑m(0,1,2,3,4,8,12)



Simple Don’t Care Example

• Let F = AB + AB

• Suppose we know that a disallowed input combo is A=1, B=0

• Can we replace F with a simpler function G whose output matches for all 
inputs we do care about?

• Let H be the function with Don’t-care conditions for obsolete inputs

• Both F & G are appropriate functions for H

• G can substitute for F for valid input combinations

81

A B F H G

0 0 1 1 1

0 1 0 0 0

1 0 0 X 1

1 1 1 1 1

Inputs will 
not occur

G= AB + B



 2-bit multiplier non-0 multiplier (SOLUTION)

82

a1 a0 b1 b0 z3 z2 z1 z0
0 0 0 0 X X X X
0 0 0 1 X X X X
0 0 1 0 X X X X
0 0 1 1 X X X X
0 1 0 0 X X X X
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 X X X X
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 X X X X
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

z3 = a1a0b1b0 z2 = a1b0 + a0b1

X X X X

X 0 0 0

X 0 1 0

X 0 0 0
a1

a0

X X X X

X 0 0 0

X 0 0 1

X 0 1 1
a1

a0

b1

b0 b0

b1

1’s must be covered
0’s must not be covered
X’s are optionally covered

(vs. a1a0b1 + a1b1b0)



 2-bit multiplier non-0 multiplier (SOLUTION)

83

X X X X

X 1 1 0

X 1 1 0

X 0 0 0

a0
a1

X X X X

X 0 1 1

X 1 0 1

X 1 1 0

a0
a1

b0 b0

b1 b1

z0 = a0b0z1 = (exercise)

Still have prime and 
essential prime implicants

All above prime implicants 
are essential

a1 a0 b1 b0 z3 z2 z1 z0
0 0 0 0 X X X X
0 0 0 1 X X X X
0 0 1 0 X X X X
0 0 1 1 X X X X
0 1 0 0 X X X X
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 X X X X
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 X X X X
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1



Final thoughts on Don’t care conditions

Sometimes “don’t cares” greatly simplify circuitry

84

1 X X X

X 1 X X

0 0 1 X

0 0 X 1
A

D

C

B

ABCD + ABCD + ABCD + ABCD  vs. A + C 



Timing, Glitches, and Hazards



There is a delay between changes in circuit input and the output changing in 
response 

The challenge is to build fast circuits

Delay is caused by

Capacitance and resistance in a circuit

Speed of light limitation

Timing

86

Copyright © 2007 Elsevier 



Propagation delay: tpd = max delay from input to output

Contamination delay: tcd = min delay from input to output

Propagation and Contamination Delay

87

Copyright © 2007 Elsevier 

Reasons why tpd and tcd may 
be different:

Different rising and falling delays

Multiple inputs and outputs, some 
of which are faster than others

Circuits slow down when hot and 
speed up when cold 



Critical (Long) and Short Paths

88

Copyright © 2007 Elsevier 

     Critical (Long) Path: tpd = 2tpd_AND + tpd_OR 

                    Short Path: tcd = tcd_AND 



• Glitch: when a single input change causes multiple output changes

• Glitches don’t cause problems because of synchronous design conventions 
(which we’ll talk about in a bit)

• But it’s important to recognize a glitch when you see one in timing diagrams

•

Glitches

89

Copyright © 2007 Elsevier 

• Example:  what happens when A=0, 
C=1, and B falls?



Glitches Example (cont.)

90

Copyright © 2007 Elsevier 



Fixing the Glitch

91

Copyright © 2007 Elsevier 

NB: Can’t get rid of all glitches – 
simultaneous transitions on multiple 

inputs can also cause glitches


