CSEE 3827: Fundamentals of Computer Systems, Spring 2011

I. Number Representation

Prof. Martha Kim (<u>martha@cs.columbia.edu</u>) Web: <u>http://www.cs.columbia.edu/~martha/courses/3827/sp11/</u>

Contents (H&H 1.3-1.4, 5.3)

- Digital Information Representation
 - Decimal
 - Hexadecimal
 - BCD
- Terminology:
 - Bit / Byte / Words
 - Highest Order (most significant) Bit, Lowest Order (least significant) bit
- Negative Number Formats:
 - Signed Magnitude
 - 1's Complement
 - 2's Complement
- Fractions via Binary
 - Fixed Point
 - Floating Point

Number systems: Base 10 (Decimal)

- 10 digits = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- example: 4537.8 = (4537.8) ₁₀

Number systems: Base 2 (Binary)

- 2 digits = {0,1}
- example: $1011.1 = (1011.1)_2$

Number systems: Base 8 (Octal)

- 8 digits = $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- example: (2365.2) ₈

Number systems: Base 16 (Hexadecimal)

- 16 digits = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
- example: (26BA) [alternate notation for hex: 0x26BA]

Why Important: More concise than binary, but related (a power of 2)

Hexadecimal (or hex) is often used for addressing

Number ranges

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...
 - ... 5 digits in decimal?

10⁵ possible values

... 8 binary digits?

28 possible values

... 4 hexadecimal digits?

164 possible values

Computer from Digital Perspective

- Information: just sequences of binary (0's and 1's)
 - True = 1, False = 0
- Numbers: converted into binary form when "viewed" by computer
 - e.g., 19 = 10011 (16 (1) + 8 (0) + 4 (0) + 2 (1) + 1 (1)) in binary
- Characters: assigned a specific numerical value (ASCII standard)
 - e.g., 'A' = 65 = 1000001, 'a' = 97 = 1100001
- Text is a sequence of characters:
 - "Hi there" = 72, 105, 32, 116, 104, 101, 114, 101

= 1001000, 1101001, ...

Terminology: Bit, Byte, Word

- bit = a binary digit e.g., 1 or 0
- byte = 8 bits e.g., 01100100
- word = a group of bits that is **architecture dependent**

(the number of bits that an architecture can process at once)

a 16-bit word = 2 bytes e.g., 1001110111000101

a 32-bit word = 4 bytes e.g., 100111011100010101110111000101

OBSERVATION: computers have bounds on how much input they can handle at once \rightarrow limits on the sizes of numbers they can deal with

Terminology: MSB, LSB

- Bit at the left is highest order, or most significant bit (MSB)
- Bit at the right is lowest order, or least significant bit (LSB)

Common reference notation for k-bit value: bk-1bk-2bk-3...b1b0

Unsigned numbers a.k.a. Binary Coded Decimal (BCD)

Binary numbers represent only non-negative (positive or 0) values

BCD where wordsize=3:

value	BCD
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Addition of binary (unsigned numbers)

e.g., the "correct" answer 110011 requires 6 bits: cannot be represented with only s bits in unsigned representation

What about negative numbers?

Given a fixed wordsize how do you represent both positive and negative numbers?

Have certain bit combinations represent negative numbers

- e.g., Signed Magnitude
 - highest order bit (b_{k-1}) indicates sign: 0 = positive, 1 = negative
 - remaining bits indicate magnitude
 - e.g., 0011 = 3
 - e.g., 1011 = -3
 - e.g., 1000 = 0000 = 0
- Positive #'s have same form in both signed magnitude and unsigned
- Easy for humans to interpret, but not easiest form for computers to do addition/subtraction operations

Negative Numbers: 1's Complement Representation

- Non-negative #'s have same representation as unsigned (and signed-mag)
- To negate a #, flip all bits (not just highest-order as in signed-mag)
- e.g., wordsize = 4
 - 0010 = 2
 - 1101 = -2

Suppose wordsize is 8, what is the value of 11101011 when it represents a # in 1's Complement representation?

Note: in 1's complement, there are two ways to represent 0: all 0s and all 1s

Negative Numbers: 2's Complement Representation

- Non-negative #'s have same representation as unsigned (and signed-mag)
- To negate a #, flip all bits and add 1
- e.g., wordsize = 4
 - 0010 = 2, so 1101 + 1 = 1110 = -2
 - 0110 = 6, so 1001 + 1 = 1010 = -6
 - 1010 = -6, so 0101 + 1 = 0110 = 6 (works in both directions)
 - 0000 = 0, so 1111 + 1 = 0000 = 0 (0 is unique in 2's complement)

Note: negation works both ways in all cases except 1 followed by all 0s (e.g., 1000). for wordsize=k, the value is -2^{k-1} (e.g., k=4, value is -8)

Note: the positive value of 2^{k-1} is not expressible

Number encoding summary

	BCD	Sign&Mag.	1s Comp.	2s Comp.	
000	0	+0	+0	+0	
001	1	+1	+1	+1	
010	2	+2	+2	+2	
011	3	+3	+3	+3	
100	4	0	-3	-4	
101	5	-1	-2	-3	
110	6	-2	-1	-2	
111	7	-3	0	-1	

8 values

7 values,

2 zeroes

7 values, 2 zeroes 8 values, 1 zero

k-bit Words & Ranges of various formats

- Given a k-bit word, what range of numbers can be represented as:
 - unsigned: 0 to 2^k 1 (e.g., k=8, 0 to 255)
 - signed mag: $-2^{k-1} + 1$ to $2^{k-1} 1$ (e.g., k=8, -127 to 127 [2 vals for 0])
 - 1's complement: same as signed mag (but negative numbers are represented differently)
 - 2's complement: -2^{k-1} to 2^{k-1} 1 (e.g., k=8, -128 to 127 [1 val for 0])

Getting representation

Given an 8-bit wordsize, what is the value of 10001011?

What do you mean, Unsigned, Signed Magnitude, 1's complement or 2's complement?

· 2's Complement: i's complement + 1 = -117

Representation v. Operation

- We have discussed various representations for expressing integers
 - unsigned, signed magnitude, 1's-complement, 2's-complement
- There are also bit-oriented operations that go by the same names
 - 1's-complement: flip all bits
 - 2's-complement: flip all bits and add 1
- Operation can be performed on a number, regardless of representation
 - e.g., let 10111 be a number in signed-magnitude form (value is -7)
 - 2's complement (operation) of 10111 = 01001 (value is 9 in signed-mag form)
- Observe:
 - 2's-complement operation negates a number when in 2's-complement representation
 - 1's-complement operation negates a number when in 1's-complement representation

Automating Subtraction

Why are we interested in 2's-complement when it seems so less intuitive?

Much easier to automate subtraction (i.e., add #'s of opposite sign)

- Just negate subtrahend (bottom # in subtract) and add
- e.g, wordsize 6, perform 14 21 using signed magnitude representation

X = 111001, -X = 000111 = 7, X=-7

Why 2's-complement subtraction works (basic idea)

- Think of a pinwheel, here is BCD representation
 - Addition operation of X+Y interprets Y as BCD and shifts Y slots clockwise from X to give the sum
- Now change the representation to 2's complement
 - X+Y still shifts bits (Y in BCD) slots clockwise
 - e.g., 2-3 = 010+101 = 010 shifted 5 slots
 clockwise = 111 = -1

Another nice feature of 2s complement representation = easy to detect overflow. More on that later. Remainder of the course: unsigned or 2s complement.

What about numbers with fractions?

- Two common notations
 - Fixed-point (the binary point is fixed)
 - Floating-point (the binary point floats to the right of the most significant 1)

Fixed-Point Notation

• Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

01101100
0110.1100
$$2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 6.75$$

- The binary point is not a part of the representation but is implied.
- The number of integer and fraction bits must be agreed upon by those generating and those reading the number.

Floating-Point Notation

- The binary point floats to the right of the most significant 1.
- Similar to decimal scientific notation.
- For example, write 273_{10} in scientific notation: $273 = 2.73 \times 10^2$
- In general, a number is written in scientific notation as: $\pm M \times B^{E}$
 - Where, M = mantissa, B = base, E=exponent

Sign	Exponent	Mantissa
1 bit	8 bits	23 bits

Need a bigger range?

- Change the encoding.
- Floating point (used to represent very large numbers in a compact way)
 - A lot like scientific notation: 5.4×10^{5} exponent mantissa
 - Except that it is binary: 1011 1001 x 2

What about negative numbers?

- Change the encoding.
 - Sign and magnitude
 - Ones compliment
 - Twos compliment

Sign and magnitude

- Most significant bit is sign
- Rest of bits are magnitude

 $0110 = (6)_{10}$

$$1110 = (-6)_{10}$$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1000 = (-0)_{10}$

Ones compliment

- Compliment bits in positive value to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$

$$1001 = (-6)_{10}$$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1111 = (-0)_{10}$

Twos compliment

- Compliment bits in positive value and add 1 to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$ $1001 + 1 = 1010 = (-6)_{10}$

- One representation of zero
 - $0000 = (0)_{10} \qquad 1000 = (-8)_{10} \qquad 1111 = (-1)_{10}$
- One more negative number than positive

MIN: $1000 = (-8)_{10}$ MAX: $0111 = (7)_{10}$

How about letters?

• Change the encoding.

American Standard Code for Information Interchange (ASCII)								
$B_4B_3B_2B_1$	$\mathbf{B}_7 \mathbf{B}_6 \mathbf{B}_5$							
	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	Р		р
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	х
1001	HT	EM)	9	Ι	Y	i	У
1010	LF	SUB	*	:	J	Ζ	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	Ň	1	Ĩ
1101	CR	GS	-	=	Μ]	m	}
1110	SO	RS		>	Ν	^	n	~
1111	SI	US	/	?	0	_	0	DE

TABLE 1-5 American Standard Code for Information Interchange (ASCII)

Gray code

Binary numeric encoding where successive numbers differ by only 1 bit

value	BCD	# bit flips	Gray	# bit flips
0	000	З	000	1
1	001	1	001	1
2	010	2	011	1
3	011	1	010	1
4	100	3	110	1
5	101	1	111	1
6	110	2	101	1
7	111	1	100	1

How about letters?

• Change the encoding.

American Standard Code for Information Interchange (ASCII)								
$B_4B_3B_2B_1$	$\mathbf{B}_7 \mathbf{B}_6 \mathbf{B}_5$							
	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	Р		р
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	х
1001	HT	EM)	9	Ι	Y	i	У
1010	LF	SUB	*	:	J	Ζ	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	Ň	1	Ĩ
1101	CR	GS	-	=	Μ]	m	}
1110	SO	RS		>	Ν	^	n	~
1111	SI	US	/	?	0	_	0	DE

TABLE 1-5 American Standard Code for Information Interchange (ASCII)