
CSEE 3827: Fundamentals of Computer Systems,
Spring 2011

1. Number Representation

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Contents (H&H 1.3-1.4, 5.3)

2

• Digital Information Representation

• Decimal

• Hexadecimal

• BCD

• Terminology:

• Bit / Byte / Words

• Highest Order (most significant) Bit, Lowest Order (least significant) bit

• Negative Number Formats:

• Signed Magnitude

• 1’s Complement

• 2’s Complement

• Fractions via Binary

• Fixed Point

• Floating Point

Number systems: Base 10 (Decimal)

• 10 digits = {0,1,2,3,4,5,6,7,8,9}

• example: 4537.8 = (4537.8)

10 10 10
01210

3
10
-1

5 3 74 8.

500 30 74000 .8

10

x x x x x

+ + + + = 4537.8

Number systems: Base 2 (Binary)

• 2 digits = {0,1}

• example: 1011.1 = (1011.1)
2

0 1 11 1

2 2 2
0122

3

0 2 18

x x x x

+ + + = (11.5) 10

2
-1

.5

x

+

.

Number systems: Base 8 (Octal)

• 8 digits = {0,1,2,3,4,5,6,7}

• example: (2365.2)
8

3 6 52 2

8 8 8
0128

3

192 48 51024

x x x x

+ + + = (1269.25)10

8
-1

.25

x

+

.

Number systems: Base 16 (Hexadecimal)

• 16 digits = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

• example: (26BA) [alternate notation for hex: 0x26BA]
16

16 16 16
123

2 6 B

8192 1536 176

x x x

+ + = (9914)10

16
0

A

10

x

+

Why Important: More concise than binary, but related (a power of 2)

Hexadecimal (or hex) is often used for addressing

Number ranges

• Map infinite numbers onto finite representation for a computer

• How many numbers can I represent with ...

... 5 digits in decimal?

... 8 binary digits?

... 4 hexadecimal digits?

10 possible values5

2 possible values8

16 possible values4

Computer from Digital Perspective

• Information: just sequences of binary (0’s and 1’s)

• True = 1, False = 0

• Numbers: converted into binary form when “viewed” by computer

• e.g., 19 = 10011 (16 (1) + 8 (0) + 4 (0) + 2 (1) + 1 (1)) in binary

• Characters: assigned a specific numerical value (ASCII standard)

• e.g., ‘A’ = 65 = 1000001, ‘a’ = 97 = 1100001

• Text is a sequence of characters:

• “Hi there” = 72, 105, 32, 116, 104, 101, 114, 101

 = 1001000, 1101001, ...

Terminology: Bit, Byte, Word

• bit = a binary digit e.g., 1 or 0

• byte = 8 bits e.g., 01100100

• word = a group of bits that is architecture dependent

 (the number of bits that an architecture can process at once)

 a 16-bit word = 2 bytes e.g., 1001110111000101

 a 32-bit word = 4 bytes e.g., 100111011100010101110111000101

OBSERVATION: computers have bounds on how much input they can
handle at once limits on the sizes of numbers they can deal with

• Bit at the left is highest order, or most significant bit (MSB)

• Bit at the right is lowest order, or least significant bit (LSB)

 e.g., 1001110111000101

• Common reference notation for k-bit value: bk-1bk-2bk-3...b1b0

Terminology: MSB, LSB

MSB LSB

Unsigned numbers

value BCD
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

a.k.a. Binary Coded Decimal (BCD)

Binary numbers represent only non-negative (positive or 0) values

BCD where wordsize=3:

Addition of binary (unsigned numbers)

Like decimal addition, except:
1+1 = 0 with a carry of 1,
1+1+1 = 1 with carry of 1
e.g., wordsize = 5, add 11110 and 10101 (30 + 21)

1 1 1 1 0
1 0 1 0 1

+

1 0 0 1 1

111Overflow
when result cannot fit
within the wordsize

constraint

30
21
19

e.g., the “correct” answer
110011 requires 6 bits: cannot
be represented with only 5

bits in unsigned representation

What about negative numbers?

Given a fixed wordsize how do you represent both positive and negative
numbers?

• e.g., Signed Magnitude

• highest order bit (bk-1) indicates sign: 0 = positive, 1 = negative

• remaining bits indicate magnitude

• e.g., 0011 = 3

• e.g., 1011 = -3

• e.g., 1000 = 0000 = 0

• Positive #’s have same form in both signed magnitude and unsigned

• Easy for humans to interpret, but not easiest form for computers to do
addition/subtraction operations

Have certain bit combinations represent negative numbers

Negative Numbers: 1’s Complement Representation

• Non-negative #’s have same representation as unsigned (and signed-mag)

• To negate a #, flip all bits (not just highest-order as in signed-mag)

• e.g., wordsize = 4

• 0010 = 2

• 1101 = -2

Let x=11101011; Know X is negative because MSB=1.
Negate X by flipping all bits: -X = 00010100
-X = 20, so X = -20

Suppose wordsize is 8, what is the value of 11101011 when it represents a # in 1’s
Complement representation?

Note: in 1’s complement, there are two ways to represent 0: all 0s and all 1s

Negative Numbers: 2’s Complement Representation

• Non-negative #’s have same representation as unsigned (and signed-mag)

• To negate a #, flip all bits and add 1

• e.g., wordsize = 4

• 0010 = 2, so 1101 + 1 = 1110 = -2

• 0110 = 6, so 1001 + 1 = 1010 = -6

• 1010 = -6, so 0101 + 1 = 0110 = 6 (works in both directions)

• 0000 = 0, so 1111 + 1 = 0000 = 0 (0 is unique in 2’s complement)

Note: negation works both ways in all cases except 1 followed by all 0s (e.g., 1000).

 for wordsize=k, the value is -2k-1 (e.g., k=4, value is -8)

Note: the positive value of 2k-1 is not expressible

Number encoding summary

BCD Sign&Mag. 1s Comp. 2s Comp.

0 0 0 0 +0 +0 +0

0 0 1 1 +1 +1 +1

0 1 0 2 +2 +2 +2

0 1 1 3 +3 +3 +3

1 0 0 4 0 -3 -4

1 0 1 5 -1 -2 -3

1 1 0 6 -2 -1 -2

1 1 1 7 -3 0 -1

8 values 7 values,
2 zeroes

7 values,
2 zeroes

8 values,
1 zero

k-bit Words & Ranges of various formats

• Given a k-bit word, what range of numbers can be represented as:

• unsigned: 0 to 2k - 1 (e.g., k=8, 0 to 255)

• signed mag: -2k-1 + 1 to 2k-1 - 1 (e.g., k=8, -127 to 127 [2 vals for 0])

• 1’s complement: same as signed mag (but negative numbers are
represented differently)

• 2’s complement: -2k-1 to 2k-1 - 1 (e.g., k=8, -128 to 127 [1 val for 0])

Getting representation

• Unsigned: 128 + 8 + 2 + 1 = 139

• Signed Mag: -1 * (8 + 2 + 1) = -11

• 1’s Complement: the negation of 01110100 = -116

• 2’s Complement: 1’s complement + 1 = -117

Given an 8-bit wordsize, what is the value of 10001011?

What do you mean, Unsigned, Signed Magnitude, 1’s complement or 2’s
complement?

Representation v. Operation

• We have discussed various representations for expressing integers

• unsigned, signed magnitude, 1’s-complement, 2’s-complement

• There are also bit-oriented operations that go by the same names

• 1’s-complement: flip all bits

• 2’s-complement: flip all bits and add 1

• Operation can be performed on a number, regardless of representation

• e.g., let 10111 be a number in signed-magnitude form (value is -7)

• 2’s complement (operation) of 10111 = 01001 (value is 9 in signed-mag form)

• Observe:

• 2’s-complement operation negates a number when in 2’s-complement
representation

• 1’s-complement operation negates a number when in 1’s-complement
representation

Automating Subtraction

Why are we interested in 2‘s-complement when it seems so less intuitive?

Much easier to automate subtraction (i.e., add #’s of opposite sign)

• Just negate subtrahend (bottom # in subtract) and add

• e.g, wordsize 6, perform 14 - 21 using signed magnitude representation

001110
010101

-
001110
101011

+

111001

X = 111001, -X = 000111 = 7, X=-7

negate subtrahend (2’s complement op)

Why 2’s-complement subtraction works (basic idea)

• Think of a pinwheel, here is BCD representation

• Addition operation of X+Y interprets Y as
BCD and shifts Y slots clockwise from X to
give the sum

000

010

100

110

101 011

001111

0

1

2

3

4

5

6

7

000

010

100

110

101 011

001111

0

1

2

3

-4

-3

-2

-1

• Now change the representation to 2’s complement

• X+Y still shifts bits (Y in BCD) slots clockwise

• e.g., 2-3 = 010+101 = 010 shifted 5 slots
clockwise = 111 = -1

Another nice feature of 2s complement representation = easy to
detect overflow. More on that later. Remainder of the course:
unsigned or 2s complement.

What about numbers with fractions?

• Two common notations

• Fixed-point (the binary point is fixed)

• Floating-point (the binary point floats to the right of the most
significant 1)

Fixed-Point Notation

• Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

• The binary point is not a part of the representation but is implied.

• The number of integer and fraction bits must be agreed upon by those
generating and those reading the number.

01101100
0110.1100
2 + 2 + 2 + 2 = 6.752 1 -1 -2

Floating-Point Notation

• The binary point floats to the right of the most significant 1.

• Similar to decimal scientific notation.

• For example, write 27310 in scientific notation:

• In general, a number is written in scientific notation as:

• Where, M = mantissa, B = base, E=exponent

273 = 2.73 × 102

± M × BE

Need a bigger range?

• Change the encoding.

• Floating point (used to represent very large numbers in a compact way)

• A lot like scientific notation:

• Except that it is binary:

5.4 x 10
5

mantissa

exponent

1001 x 2
1011

What about negative numbers?

• Change the encoding.

• Sign and magnitude

• Ones compliment

• Twos compliment

Sign and magnitude

• Most significant bit is sign

• Rest of bits are magnitude

• Two representations of zero

0110 = (6) 1110 = (-6)

0000 = (0) 1000 = (-0)

10 10

10 10

Ones compliment

• Compliment bits in positive value to create negative value

• Most significant bit still a sign bit

• Two representations of zero

0110 = (6) 1001 = (-6)

0000 = (0) 1111 = (-0)

10 10

10 10

Twos compliment

• Compliment bits in positive value and add 1 to create negative value

• Most significant bit still a sign bit

• One representation of zero

• One more negative number than positive

0110 = (6) 1001 + 1 = 1010 = (-6)

0000 = (0) 1000 = (-8)

10 10

10 10

MAX: 0111 = (7)
10

MIN: 1000 = (-8)
10

1111 = (-1)
10

How about letters?

• Change the encoding.

Gray code

value BCD # bit flips Gray # bit flips

0 0 0 0 3 0 0 0 1

1 0 0 1 1 0 0 1 1

2 0 1 0 2 0 1 1 1

3 0 1 1 1 0 1 0 1

4 1 0 0 3 1 1 0 1

5 1 0 1 1 1 1 1 1

6 1 1 0 2 1 0 1 1

7 1 1 1 1 1 0 0 1

Binary numeric encoding where successive numbers differ by only 1 bit

How about letters?

• Change the encoding.

