
CSEE 3827: Fundamentals of Computer Systems,
Spring 2011

11. Caches

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Outline (H&H 8.2-8.3)

2

• Memory System Performance Analysis

• Caches

Introduction

• Computer performance depends on:

• Processor performance

• Memory system performance

CPU time = (CPU clock cycles + Memory-stall clock cycles) * Cycle time

Memory Speed History

• So far, assumed memory could be accessed in 1 clock cycle

• That hasn’t been true since the 1980’s

Memory Hierarchy

• Make memory system appear as fast as processor

• Ideal memory

• Fast

• Cheap (inexpensive)

• Large (capacity)

• Solution: Use a hierarchy of memories

 choose two!}

Locality

• Exploit locality to make memory accesses fast

• Temporal Locality

• Locality in time (e.g., if looked at a Web page recently, likely to look at it again soon)

• If data used recently, likely to use it again soon

• How to exploit: keep recently accessed data in higher levels of memory hierarchy

• Spatial Locality

• Locality in space (e.g., if read one page of book recently, likely to read nearby pages soon)

• If data used recently, likely to use nearby data soon

• How to exploit: when access data, bring nearby data into higher levels of memory hierarchy too

Memory Performance

• Hit: is found in that level of memory hierarchy

• Miss: is not found (must go to next level)

• Hit Rate = # hits / # memory accesses = 1- Miss Rate

• Miss Rate = # misses / #memory accesses = 1 - Hit Rate

• Expected Access Time: average time to access data from level L of the
hierarchy

EATL = ATL + (MRL x EATL+1)

Memory Performance Example

• A program has 2,000 load and store instructions

• 1,250 of these data values found in cache

• The rest are supplied by other levels of memory hierarchy

• What are the hit and miss rates for the cache?

• Suppose hierarchy has two levels:

• cache (1 cycle AT)

• main memory (100 cycle AT)

• What is the EAT for this program?

Hit Rate = 1250/2000 = 0.625

 Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

EAT(cache) = AT(cache) + MR(cache) * EAT(memory)
EAT(cache) = 1 + .375*100 = 38.5 cycles

Cache

• Highest level in memory hierarchy

• Fast (typically ~ 1 cycle access time)

• Ideally supplies most of the data to the processor

• Usually holds most recently accessed data

• Cache design questions

• What data is held in the cache?

• How is data found?

• What data is replaced?

• We’ll focus on data loads, but stores follow same principles

What data is held in the cache?

• Ideally, cache anticipates data needed by processor and holds it in cache

• But impossible to predict future

• So, use past to predict future – temporal and spatial locality:

• Temporal locality: copy newly accessed data into cache. Next time it’s
accessed, it’s available in cache.

• Spatial locality: copy neighboring data into cache too. Block size = number
of bytes copied into cache at once.

Cache Terminology

• Capacity (C): the number of data bytes a cache stores

• Block size (b): bytes of data brought into cache at once

• Number of blocks (B = C/b): number of blocks in cache: B = C/b

• Degree of associativity (N): number of blocks in a set

• Number of sets (S = B/N): each memory address maps to exactly one cache
set

How is data found?

• Cache organized into S sets

• Each memory address maps to exactly one set

• Caches categorized by number of blocks in a set:

• Direct mapped: 1 block per set

• N-way set associative: N blocks per set

• Fully associative: all cache blocks are in a single set

• Examine each organization for a cache with:

• Capacity (C = 8 words)

• Block size (b = 1 word)

• So, number of blocks (B = 8)

Direct Mapped Cache (Concept)

Direct Mapped Cache (Hardware)

Direct Mapped Cache Performance

MIPS assembly code

 addi $t0, $0, 5
loop: beq $t0, $0, done
 lw $t1, 0x4($0)
 lw $t2, 0xC($0)
 lw $t3, 0x8($0)
 addi $t0, $t0, -1
 j loop
done:

Miss Rate = 3/15
 = 20%
Temporal Locality

Compulsory Misses

Direct Mapped Cache: Conflict

MIPS assembly code

 addi $t0, $0, 5
loop: beq $t0, $0, done
 lw $t1, 0x4($0)
 lw $t2, 0x24($0)
 addi $t0, $t0, -1
 j loop
done:

Miss Rate = 10/10
 = 100%

Conflict Misses

N-Way Set Associative Cache

N-Way Set Associative Performance

MIPS assembly code

 addi $t0, $0, 5
loop: beq $t0, $0, done
 lw $t1, 0x4($0)
 lw $t2, 0x24($0)
 addi $t0, $t0, -1
 j loop
done:

Miss Rate = 2/10
 = 20%

Associativity reduces conflict misses

Fully Associative Cache

No conflict misses (all misses either compulsory or capacity)
Very expensive to build due to associative lookup

Hit Rate v. Associativity & Cache Size

(L1 cache, Running GCC)

Cache with Larger Block Size

Direct Mapped Cache Performance

 addi $t0, $0, 5
loop: beq $t0, $0, done
 lw $t1, 0x4($0)
 lw $t2, 0xC($0)
 lw $t3, 0x8($0)
 addi $t0, $t0, -1
 j loop
done:

Miss Rate = 1/15
 = 6.67%

Larger blocks reduce compulsory misses through spatial locality

Cache Organization Recap

• Capacity: C

• Block size: b

• Number of blocks in cache: B = C/b

• Number of blocks in a set: N

• Number of Sets: S = B/N

Organization
Number of Ways

(N)
Number of Sets

(S = B/N)

Direct Mapped 1 B
N-Way Set Associative 1 < N < B B / N
Fully Associative B 1

Capacity Misses

• Cache is too small to hold all data of interest at one time

• If the cache is full and program tries to access data X that is not in cache,
cache must evict data Y to make room for X

• Capacity miss occurs if program then tries to access Y again

• X will be placed in a particular set based on its address

• In a direct mapped cache, there is only one place to put X

• In an associative cache, there are multiple ways where X could go in the set.

• How to choose Y to minimize chance of needing it again?

• Least recently used (LRU) replacement: the least recently used block in a set is
evicted when the cache is full.

Caching Summary

• What data is held in the cache?

• Recently used data (temporal locality)

• Nearby data (spatial locality, with larger block sizes)

• How is data found?

• Set is determined by address of data

• Word within block also determined by address of data

• In associative caches, data could be in one of several ways

• What data is replaced?

• Least-recently used way in the set

Multilevel Caches

• Larger caches have lower miss rates, longer access times

• Expand the memory hierarchy to multiple levels of caches

• Level 1: small and fast (e.g. 16 KB, 1 cycle)

• Level 2: larger and slower (e.g. 256 KB, 2-6 cycles)

• Even more levels are possible

Hit Rates for Constant L1, Increasing L2

Hit Rate v. L1 and L2 Cache Size

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

Evolution of Cache Architectures

Processor Year Freq. (MHz) L1 Data L1 Instr. L2 Cache

80386 1985 16-25 none none none

80486 1989 25-100 8KB unified none on chip

Pentium 1993 60-300 8KB 8KB none on chip

Pentium Pro 1995 150-200 8KB 8KB 256KB-1MB
in MCM

Pentium II 1997 233-450 16KB 16KB 256-512KB
on cartridge

Pentium III 1999 450-1400 16KB 16KB 256-512KB
on chip

Pentium 4 2001 1400-3730 8-16KB 12k op trace
cache

256KB-2MB
on chip

Pentium M 2003 900-2130 32KB 32KB 1-2MB
on chip

Core Duo 2005 1500-2160 32KB/core 32KB/core 2MB shared
on chip

