CSEE 3827: Fundamentals of Computer Systemes,
Spring 201 |

9. Pipelined MIPS Processor

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/spl |/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Qutline (H&H 7.5)

¢ Pipelined MIPS processor
¢ Pipelined Performance

Single-Cycle CPU Performance Issues

* [ongest delay determines clock period

e Critical path: load instruction

¢ instruction memory — register file = ALU — data memory — register file

* Not feasible to vary clock period for different instructions

e A multicycle implementation would solve this (See H&H 7.4)

¢ \We will improve performance by pipelining

Pipelining Laundry Analogy

6 PM 7

Time —_
|

Task

order
v O

B

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy,and Don each have dirty clothes
to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for
their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours.
We show the pipeline stage of different loads over time by showing copies of the four resources on this
two-dimensional time line, but we really have just one of each resource. Copyright © 2009 Elsevier, Inc. All
rights reserved.

Pipelining Abstraction

10

>

Time (cycles)

MIPS Pipeline

* Five stages, one step per stage, one stage per cycle

IF: Instruction fetch from (instruction) memory

ID: Instruction decode and register read (register file read)

EX: Execute operation or calculate address (ALU) or branch condition + calculate
branch address

MEM: Access memory operand (memory) / adjust PC counter

WB: Write result back to register (reg file again)

e Note: Every instruction has every stage, though not every instruction needs
every stage

Single-Cycle and

A RD

CLK
\ \
WE3

A1 RD1

Pipelined

L

Instruction
Memory

~ + PCPlus4

A2 RD2

-
>

Datapath

Zero
ALUResult

<

A3

Register

WD3 File

WriteData

WriteReg,,.,

P

Sign Extend

PCBranch

PCPIlus4F

A RD

Instruction
Memory

0
ReadData 1

Result

InstrD

CI‘_K ‘

WE3
A1 RD1

A2 RD2

A3

WD3 Register

File

>3
0 | srcBE <

1
\\VriteDatakE

ALUOUtW

ZeroM

ALUOuUtM

WriteDataM

WriteRegE,,

a
1
| —

Sign Extend

PCPlus4D

SignimmE

PCPIlus4E

PCBranchM

0
ReadDataW

ResultW

Writeback

Corrected Pipelined Datapath

o \WriteReg must arrive at the same time as Result

CLK

{b‘ ALUOutW

CiK

A RD

Instruction
Memory

0
ALUOuUtM ReadDataW 1

InstrD A1 RD1
>3
o <

A2 RD2 SrcBE

A3
WD3

Register
File

WriteDataE WriteDataM

WriteRegE, , WriteRegM,,., WriteRegW,,.,

RdE

RtE
tTJL
1
—

SignlmmE

—

Sign Extend

<<?

PCBranchM

PCPlus4F PCPlus4D PCPIlus4E

ResultW

Writeback

WE3 é, ZeroM
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Pipelined Control

PCPIlus4F

A RD

Instruction
Memory

CLK

o

InstrD

RegWriteD

CLK
I

RegWriteE

RegWriteM

RegWriteW

Control

MemtoRegD

MemtoRegE

MemtoRegM

MemtoRegW

Unit

MemWriteD

MemWriteE

MemWriteM

BranchD

BranchE

BranchM

Op

ALUControlD

ALUControIEzzO

ALUSrcD

ALUSIrcE

CLK
|

RegDstD

RegDstE

A1

A2

A3

WD3

WE3

Register

RD1

RD2

File

[0

1

—3
<

SrcBE

\WriteDataE

PCSrcM

ALUOuUtW

CLK
|

ZeroM WE

ALUOuUtM

A RD

WriteDataM

[

O\

WriteRegE,

WriteRegM,,

0
ReadDataW 1

WriteRegW,,

P

Sign Extend

PCPIlus4D

1

SignimmE

PCPIlus4E

<<2

PCBranchM

ResultW

Same control unit as single-cycle processor

Control delayed to proper pipeline stage

Plpeline Hazaro

e Occurs when an instruction depends on results from previous instruction that
hasn’t completed.

¢ Types of hazards:

e Data hazard: register value not written back to register file yet

e Control hazard: next instruction not decided yet (caused by branches)

Data Hazard

8

>

Time (cycles)

add $s0, S$s2,

$t0, $s0, S$sl

tl, Ss4, S$sO

sub $t2, $s0, $s5

e Handling them:
nsert nops in code at compile time

Rearrange code at compile time

Forward data at run time

e Stall the processor at run time

Compile-Time Hazard Elimination

¢ Insert enough nops for result to be ready

e Or move independent useful instructions forward

8

Time (cycles)

Data Forwarding (Concept)

e Don’t wait for data to be written to register file, send it directly to where
needed.

8

>

Time (cycles)

Data Forwarding (Circuitry)

Data Forwarding

e Forward to X stage from either M or WB

e Forwarding logic for ForwardAE:

if (rsE != 0 AND rskE == WriteRegM AND RegWriteM)
then ForwardAE = 10
else 1if (rsE != 0 AND rsE == WriteRegW AND RegWriteW)
then ForwardAE = 01
else ForwardAE = 00

e Forwarding logic for ForwardBE same, but replace rsE with rtE

Stalling (Stall Needed)

8

>

Time (cycles)

1w $s0, 40(S0)

and $t0, $s0, $sl

or S$tl, $s4, $sO

sub $t2, $s0, $s5

Stalling (Instructions Stalled)

Time (cycles)

1w $s0, 40($0)

and $t0, $s0, S$sl

or Stl, S$s4, S$sO

sub $t2, $s0, $s5

Stalling Hardware

w
()]
[0
&
L) e £
S 5 2 3
17} %) ic =
{ Hazard Unit J

lwstall = ((rsD == rtE) OR (rtD == rtE)) AND MemtoRegE
StallF = StallD = FlushE = lwstall

Control Hazards

®* beq:

e Branch is not determined until the fourth stage of the pipeline

¢ |nstructions after the branch are fetched before branch occurs

e These instructions must be flushed if the branch happens

e Branch misprediction penalty

e Number of instruction flushed when branch is taken

e May be reduced by determining branch earlier

Control Hazards

9

>

Time (cycles)

beg $tl1, S$t2,

and $t0, $s0,

Flush
these

or Stl, $s4, | instructions

sub $t2, $s0,

Control Hazards: Early Branch Resolution

CLK CLK CLK

(ﬁ RegWriteD 67 RegWriteE 67 RegWriteM
C

ont.rOI MemtoRegD MemtoRegE
Unit

% RegWiriteW

MemtoRegM MemtoRegW
MemWriteD MemWiriteE MemWriteM

ALUControID2 o ALUControIE20
Op ALUSIcD ALUSIcE

RegDstD RegDstE
BranchD

—
CLK EqualD
|

A1 WES3 RD1
A RD InstrD

- ALUOUtM ReadDataW
Instruction

Memory A2 RD2
)
ALUOuUtW
0

A3
WriteRegE, WriteRegM,, WriteRegW,,

ist i t WriteDataM
WD3 Relgillz er WriteDataE

(gn SignlmmD
Extend

SignimmE

PCPlus4F PCPlus4D

PCBranchD

ResultwW

ForwardAE
ForwardBE
MemtoRegE
RegWriteM
RegWriteW

Hazard Unit

Introduced another data hazard in Decode stage

Control Hazards with SBranch Resolution

9

>

Time (cycles)

beq tl, St2,

Flush
and $t0, $sO,] this

instruction

or Stl, $s4,

sub $t2, $s0,

Handling Data and Control Hazards

Control Forwarding and Stalling Hardware

e Forwarding logic:

ForwardAD = (rsD '=0) AND (rsD WriteRegM) AND RegWriteM
ForwardBD = (rtD '=0) AND (rtD WriteRegM) AND RegWriteM

e Stalling logic:

branchstall = (BranchD AND
RegWriteE AND
(WriteRegE == rsD OR WriteRegE ==
OR
(BranchD AND
MemtoRegM AND
(WriteRegM == rsD OR WriteRegM == rtD))

StallF = StallD = FlushE = lwstall OR branchstall

Branch Prediction

e Guess whether branch will be taken

e Backward branches are usually taken (loops)

e Perhaps consider history of whether branch was previously taken to
iImprove the guess

e Good prediction reduces the fraction of branches requiring a flush

Pipelined Performance Example

e |deally CPI =1

e But need to handle stalling (caused by loads and branches)

e SPECINT2000 benchmark: e Suppose:

® 25% loads e 40% of loads used by next instruction
* 10% stores e 25% of branches mispredicted

11% branches e What is the average CPI?

2% jumps

52% R-type

Pipelined Performance Example (SOLN)

e |deally CPI =1

e But need to handle stalling (caused by loads and branches)

e SPECINT2000 benchmark: e Suppose:

® 25% loads e 40% of loads used by next instruction

10% stores e 25% of branches mispredicted

11% branches e What is the average CPI?

2% jumps Load/Branch CPI
= 1 when no stalling
52% R-type = 2 when stalling
Thus,
CPlw = 1(0.6) + 2(0.4) = 1.4
CPloeq = 1(0.75) + 2(0.25) = 1.25
Thus,
Average CPI
=(0.25)(1.4) + (0.1)(1) + (0.11)(1.25) + (0.02)(2) + (0.52)(1)
=1.15

Pipelined Processor Critical Path

T. = max {

tpcq + fmem T tsetup

z(tRFread T fmux T teq T fAND T fmux T tsetup)
tpcq T fmux T fmux T fALU T tsetup

tpcq Imemwrite tsetup
Z(tpcq fmux tRerite)}

Pipelined Performance Example

Element Parameter
Register clock-to-Q [pcqg PC

Register setup Isetup

Multiplexer L rux

ALU [ALU
Memory read

tmem

Register file read [RFread

Register file setup I RFsetup 20
40
AND gate IAND 15
220

Register file write [RFwrite 100

Equality comparator leg

Memory write 1 memwrite

Tczz(tRFread_l_tmux_l_t +tAND+t +tetup)
=2[150+25+40+ 15+ 25+ 20] ps =550 ps

Pipelined Performance Example (2)

For a program with 100 billion 1nstructions executing on a pipelined
MIPS processor,

CPI=1.15

Te =550 ps

Execution Time = (# instructions) x CPI x T
= (100 x 10%)(1.15)(550 x 10-1?)
= 63 seconds

Speedup

Processor Execution Time (s) (single cycle baseline)

Single-cycle 95 1
Pipelined 63

