
CSEE 3827: Fundamentals of Computer Systems,
Spring 2011

9. Pipelined MIPS Processor

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Outline (H&H 7.5)

2

• Pipelined MIPS processor

• Pipelined Performance

Single-Cycle CPU Performance Issues

• Longest delay determines clock period

• Critical path: load instruction

• instruction memory → register file → ALU → data memory → register file

• Not feasible to vary clock period for different instructions

• A multicycle implementation would solve this (See H&H 7.4)

• We will improve performance by pipelining

3

Pipelining Laundry Analogy

4

Pipelining Abstraction

5

MIPS Pipeline
• Five stages, one step per stage, one stage per cycle

• IF: Instruction fetch from (instruction) memory

• ID: Instruction decode and register read (register file read)

• EX: Execute operation or calculate address (ALU) or branch condition + calculate
branch address

• MEM: Access memory operand (memory) / adjust PC counter

• WB: Write result back to register (reg file again)

• Note: Every instruction has every stage, though not every instruction needs
every stage

6

Single-Cycle and Pipelined Datapath

7

Corrected Pipelined Datapath

• WriteReg must arrive at the same time as Result

8

Pipelined Control

9

Same control unit as single-cycle processor
Control delayed to proper pipeline stage

Pipeline Hazard

• Occurs when an instruction depends on results from previous instruction that
hasn’t completed.

• Types of hazards:

• Data hazard: register value not written back to register file yet

• Control hazard: next instruction not decided yet (caused by branches)

10

Data Hazard

• Handling them:

• Insert nops in code at compile time

• Rearrange code at compile time

• Forward data at run time

• Stall the processor at run time

11

Compile-Time Hazard Elimination

• Insert enough nops for result to be ready

• Or move independent useful instructions forward

12

Data Forwarding (Concept)

• Don’t wait for data to be written to register file, send it directly to where
needed.

13

Data Forwarding (Circuitry)

14

Data Forwarding

• Forward to X stage from either M or WB

• Forwarding logic for ForwardAE:	

• Forwarding logic for ForwardBE same, but replace rsE with rtE

15

if (rsE != 0 AND rsE == WriteRegM AND RegWriteM)
then ForwardAE = 10
else if (rsE != 0 AND rsE == WriteRegW AND RegWriteW)
then ForwardAE = 01
else ForwardAE = 00

Stalling (Stall Needed)

16

Stalling (Instructions Stalled)

17

Stalling Hardware

18

lwstall = ((rsD == rtE) OR (rtD == rtE)) AND MemtoRegE
StallF = StallD = FlushE = lwstall

Control Hazards

• beq:

• Branch is not determined until the fourth stage of the pipeline

• Instructions after the branch are fetched before branch occurs

• These instructions must be flushed if the branch happens

• Branch misprediction penalty

• Number of instruction flushed when branch is taken

• May be reduced by determining branch earlier

19

Control Hazards

20

Control Hazards: Early Branch Resolution

21

Introduced another data hazard in Decode stage

Control Hazards with Early Branch Resolution

22

Handling Data and Control Hazards

23

Control Forwarding and Stalling Hardware

• Forwarding logic:

• Stalling logic:

24

ForwardAD = (rsD !=0) AND (rsD == WriteRegM) AND RegWriteM
ForwardBD = (rtD !=0) AND (rtD == WriteRegM) AND RegWriteM

branchstall = (BranchD AND
 RegWriteE AND
 (WriteRegE == rsD OR WriteRegE == rtD))
 OR
 (BranchD AND
 MemtoRegM AND

 (WriteRegM == rsD OR WriteRegM == rtD))

StallF = StallD = FlushE = lwstall OR branchstall

Branch Prediction

• Guess whether branch will be taken

• Backward branches are usually taken (loops)

• Perhaps consider history of whether branch was previously taken to
improve the guess

• Good prediction reduces the fraction of branches requiring a flush

25

Pipelined Performance Example
• Ideally CPI = 1

• But need to handle stalling (caused by loads and branches)

• SPECINT2000 benchmark:

• 25% loads

• 10% stores

• 11% branches

• 2% jumps

• 52% R-type

26

• Suppose:

• 40% of loads used by next instruction

• 25% of branches mispredicted

• What is the average CPI?

Pipelined Performance Example (SOLN)
• Ideally CPI = 1

• But need to handle stalling (caused by loads and branches)

• SPECINT2000 benchmark:

• 25% loads

• 10% stores

• 11% branches

• 2% jumps

• 52% R-type

27

• Suppose:

• 40% of loads used by next instruction

• 25% of branches mispredicted

• What is the average CPI?

Load/Branch CPI
= 1 when no stalling
= 2 when stalling

Thus,
CPIlw = 1(0.6) + 2(0.4) = 1.4
CPIbeq = 1(0.75) + 2(0.25) = 1.25

Thus,
Average CPI

= (0.25)(1.4) + (0.1)(1) + (0.11)(1.25) + (0.02)(2) + (0.52)(1)
= 1.15

Pipelined Processor Critical Path

28

 Tc = max {
 tpcq + tmem + tsetup
 2(tRFread + tmux + teq + tAND + tmux + tsetup)
 tpcq + tmux + tmux + tALU + tsetup
 tpcq + tmemwrite + tsetup
 2(tpcq + tmux + tRFwrite) }

Pipelined Performance Example

29

Element Parameter Delay (ps)

Register clock-to-Q tpcq_PC 30

Register setup tsetup 20

Multiplexer tmux 25

ALU tALU 200

Memory read tmem 250

Register file read tRFread 150

Register file setup tRFsetup 20

Equality comparator teq 40

AND gate tAND 15

Memory write Tmemwrite 220

Register file write tRFwrite 100

 Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup)
 = 2[150 + 25 + 40 + 15 + 25 + 20] ps = 550 ps

Pipelined Performance Example (2)

For a program with 100 billion instructions executing on a pipelined
MIPS processor,

 CPI = 1.15
 Tc = 550 ps

Execution Time = (# instructions) × CPI × Tc
 = (100 × 109)(1.15)(550 × 10-12)
 = 63 seconds

30

Processor Execution Time (s)
Speedup

(single cycle baseline)

Single-cycle 95 1

Pipelined 63 1.51

