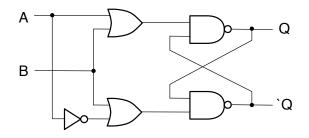
CSEE 3827: Homework 3


Complete the following problems. Be sure to show your work for partial credit.

1. A JK flip-flop is a flip-flop with the following *characteristic* table:

J	K	Q_{next}	comment
0	0	Q	hold state
0	1	0	reset
1	0	1	set
1	1	\overline{Q}	toggle

A Mux-Not flip-flop (MN flip-flop) behaves as follows: if M=1, the flip-flop complements the current state. If M=0, the next state of the flip-flop is equal to the value of N.

- (a) Derive the characteristic table for the MN flip-flop.
- (b) Show how a JK flip-flop can be converted into an MN flip-flop by adding gates and inverters.
- 2. Derive the state diagram and characteristic table of the latch circuit below.

- 3. Construct two parity checkers, one Mealy machine, one Moore machine. Both machines should have the following interface.
 - Inputs
 - X: 1 bit input signal
 - CLK: 1 bit clock
 - RST: 1 bit active high reset
 - Outputs
 - P: 1 bit parity signal where P=0 when an odd number of 1s seen on X, and P=1 for an even number of 1s on X
- 4. In this problem you will design two machines to convert serial input into 4-bit parallel output. Both machines should be Moore machines and have the following interface:
 - Inputs
 - S: 1 bit serial input (e.g., if $S = S_0, S_1, S_2, S_3, S_4, S_5, S_6, S_7...$)
 - CLK: 1 bit clock
 - RST: 1 bit active high reset
 - Outputs
 - $P_{3:0}$: 4 bit parallel output data word (... then $P = S_{0:3}$, then $P = S_{4:7}$ and so on.)
 - V: 1 bit valid signal indicating when there is a 4 bit word available on P
 - First design and implement this converter using only D flip flops to hold the state.
 - Implement a second design using a shift register to store the serial input. You may need to store other state as well. This is fine and you may use whatever state elements you like.