CSEE 3827: Fundamentals of Computer Systems

Standard Forms and Simplification with Karnaugh Maps

Agenda (M&K 2.3-2.5)

- Standard Forms
 - Product-of-Sums (PoS)
 - Sum-of-Products (SoP)
 - converting between
 - Min-terms and Max-terms
- Simplification via Karnaugh Maps (K-maps)
 - 2, 3, and 4 variable
 - Implicants, Prime Implicants, Essential Prime Implicants
 - Using K-maps to reduce
 - PoS form
 - Don't Care Conditions

Standard Forms

• There are many ways to express a boolean expression

F = XYZ + XYZ + XZ= XY(Z + Z) + XZ= XY + XZ

- It is useful to have a standard or canonical way
- Derived from truth table
- Generally not the simplest form

Two principle standard forms

- Sum-of-products (SOP)
- Product-of-sums (POS)

Product and sum terms

- Product term: logical AND of literals (e.g., XYZ)
- Sum term: logical OR of literals (e.g., $A + \overline{B} + C$)

PoS & SoP

• Sum of products (SoP): OR of ANDs

e.g.,
$$F = \overline{Y} + \overline{X}Y\overline{Z} + XY$$

Product of sums (PoS): AND of ORs

e.g., G = X(
$$\overline{Y}$$
 + Z)(X + Y + \overline{Z})

Converting from PoS (or any form) to SoP

Just multiply through and simplify, e.g.,

G = X(Y + Z)(X + Y + Z)= XYX + XYY + XYZ + XZX + XZY + XZZ = XY + XY + XYZ + XZ + XZY + XZ = XY + XZ

Converting from SoP to PoS

Complement, multiply through, complement via DeMorgan, e.g.,

Note: $X' = \overline{X}$

 $\mathsf{F} = \mathsf{Y}'\mathsf{Z}' + \mathsf{X}\mathsf{Y}'\mathsf{Z} + \mathsf{X}\mathsf{Y}\mathsf{Z}'$

$$\mathsf{F'} = (\mathsf{Y} + \mathsf{Z})(\mathsf{X'} + \mathsf{Y} + \mathsf{Z'})(\mathsf{X'} + \mathsf{Y'} + \mathsf{Z})$$

= YZ + X'Y + X'Z (after lots of simplification)

 $\mathsf{F} = (\mathsf{Y'} + \mathsf{Z'})(\mathsf{X} + \mathsf{Y'})(\mathsf{X} + \mathsf{Z'})$

Minterms

e.g., Minterms for 3 variables A,B,C

А	В	С	minterm
0	0	0	m0 ĀBĒ
0	0	1	m1 ĀBC
0	1	0	m2 ĀBĒ
0	1	1	m3 ĀBC
1	0	0	m4 AĒĒ
1	0	1	m5 ABC
1	1	0	m6 ABĒ
1	1	1	m7 ABC

- A product term in which all variables appear once, either complemented or uncomplemented (i.e., an entry in the truth table).
- Each minterm evaluates to 1 for exactly one variable assignment, 0 for all others.
- Denoted by mX where X corresponds to the variable assignment for which mX = 1.

Minterms to describe a function

sometimes also called a minterm expansion or disjunctive normal form (DNF)

Sum of minterms form

The logical OR of all minterms for which F = 1.

А	В	С	minterm	F
0	0	0	m0 ĀBĒ	0
0	0	1	m1 ĀBC	1
0	1	0	m2 ĀBĒ	1
0	1	1	m3 ĀBC	1
1	0	0	m4 ABC	0
1	0	1	m5 ABC	0
1	1	0	m6 ABC	0
1	1	1	m7 ABC	0

 $F = \overline{ABC} + \overline{ABC} + \overline{ABC}$ = m1 + m2 + m3 $= \sum m(1,2,3)$

Minterm form cont'd

						(variables appear once in each minterm)
А	В	С	F	F	minterm	
0	0	0	1	0	m0 ĀBĒ	
0	0	1	1	0	m1 ABC	0 m0 + m1 + m2 + m4 + m5
0	1	0	1	0	m2 ĀBĒ	$0 \Sigma m (0.1.2.4.5)$
0	1	1	0	1	m3 ĀBC	
1	0	0	1	0	m4 ABC	$\overline{F} = \overline{A}BC + AB\overline{C} + ABC$
1	0	1	1	0	m5 ABC	0 m3 + m6 + m7
1	1	0	0	1	m6 ABC	0 ∑m(3,6,7)
1	1	1	0	1	m7 ABC	

Minterms as a circuit

А	В	С	maxterm			
0	0	0	M0 A+B+C			
0	0	1	M1 A+B+C			
0	1	0	M2 A+B+C			
0	1	1	M3 A+B+C			
1	0	0	M4 Ā+B+C			
1	0	1	M5 Ā+B+Ē			
1	1	0	M6 A+B+C			
1	1	1	M7 A+B+C			

- A sum term in which all variables appear once, either complemented or uncomplemented.
- Each maxterm evaluates to 0 for exactly one variable assignment, 1 for all others.
- Denoted by MX where X corresponds to the variable assignment for which MX = 0.

Maxterm description of a function

sometimes also called a maxterm expansion or conjunctive normal form (CNF)

Product of maxterms form

The logical AND of all maxterms for which F = 0.

А	В	С	maxterm	F
0	0	0	M0 A+B+C	0
0	0	1	M1 A+B+C	1
0	1	0	M2 A+B+C	1
0	1	1	M3 A+B+C	1
1	0	0	M4 A+B+C	0
1	0	1	M5 Ā+B+Ē	0
1	1	0	M6 Ā+B+C	0
1	1	1	M7 Ā+B+C	0

 $F = (A+B+C) \overline{(A+B+C)} \overline{(A+B+C)} \overline{(A+B+C)} \overline{(A+B+C)} \overline{(A+B+C)}$

= (MO) (M4) (M5) (M6) (M7)

 $= \prod M(0,4,5,6,7)$

One final example

Summary of Minterms and Maxterms

Relations between standard forms

Simplification with Karnaugh Maps

Cost criteria

- Literal cost: the number of literals in an expression
- Gate-input cost: the literal cost + all terms with more than one literal + (optionally) the number of distinct, complemented single literals

Roughly proportional to the number of transistors and wires in an AND/OR/NOT circuits. Does not apply, to more complex gates, for example XOR.

	Literal cost	Gate-input cost
$G = \overline{ABCD} + ABCD$	8	8 + 2 + (4)
$G = (\overline{A} + B)(\overline{B} + C)(\overline{C} + D)(\overline{D} + A)$	8	8 + 5 + (4)

Karnaugh maps (a.k.a., K-maps)

- All functions can be expressed with a map
- There is one square in the map for each minterm in a function's truth table

Karnaugh maps express functions

• Fill out table with value of a function

Simplification using a k-map

• Whenever two squares share an edge and both are 1, those two terms can be combined to form a single term with one less variable

Simplification using a k-map (2)

- Circle contiguous groups of 1s (circle sizes must be a power of 2)
- There is a correspondence between circles on a k-map and terms in a function expression
- The bigger the circle, the simpler the term
- Add circles (and terms) until all 1s on the k-map are circled

3-variable Karnaugh maps

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")

4-variable Karnaugh maps

Extension of 3-variable maps

Implicants

Implicant: a product term, which, viewed in a K-Map is a $2^i \times 2^j$ size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2

Implicants

 Implicant: a product term, which, viewed in a K-Map is a 2ⁱ x 2^j size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2

Note: bigger rectangles = fewer literals

4-variable Karnaugh map example

W	Χ	Y	Ζ	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Implicant terminology

- **implicant**: a product term, which, viewed in a K-Map is a 2ⁱ x 2^j size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2
- prime implicant: An implicant not contained within another implicant.
- essential prime implicant: a prime implicant that is the only prime implicant to cover some minterm.

4-variable Karnaugh maps (3)

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

Using K-maps to build simplified circuits

- Step 1: Identify all PIs and essential PIs
- Step 2: Include all Essential PIs in the circuit (Why?)
- Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are "big" and do a good job covering

1	1	1	0
0	1	1	0
1	1	1	1
1	1	0	1

1	1	0	0
0	1	1	0
0	0	1	1
1	0	0	1

Design example : 2-bit multiplier

a ₁	a ₀	b1	b ₀	Z3	Z2	Z1	Z0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

two 2-bit #'s multiplied together to give a 4-bit solution

e.g., $a_1a_0 = 10$, $b_1b_0 = 11$, $z_3z_2z_1z_0 = 0110$

K-Maps: Complements, PoS, don't care conditions

Finding \overline{F}

Find prime implicants corresponding to the 0s on a k-map

 $\overline{F} = YZ + WXY$

PoS expressions from a k-map

Find \overline{F} as SoP and then apply DeMorgan's

Don't care conditions

There are circumstances in which the value of an output doesn't matter

- For example, in that 2-bit multiplier, what if we are told that a and b will be non-0? We "don't care" what the output looks like for the input cases that should not occur
- Don't care situations are denoted by an "X" in a truth table and in Karnaugh maps.
- Can also be expressed in minterm form:
- During minimization can be treated as either a 1 or a 0

 $z^2 = \Sigma m(10, 11, 14)$ $d^2 = \Sigma m(0, 1, 2, 3, 4, 8, 12)$

a1	a0	b1	b0	z3	z2	z1	z0
0	0	0	0	Х	Х	Х	Х
0	0	0	1	Х	Х	Х	Х
0	0	1	0	Х	Х	Х	Х
0	0	1	1	Х	Х	Х	Х
0	1	0	0	Х	Х	Х	Х
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	Х	Х	Х	Х
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	Х	Х	Х	Х
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

2-bit multiplier non-0 multiplier

2-bit multiplier non-0 multiplier (2)

 $Z_1 =$

 $Z_0 =$

40

Final thoughts on Don't care conditions

Sometimes "don't cares" greatly simplify circuitry

$\overline{ABCD} + \overline{ABCD} + ABCD + A\overline{BCD}$ vs. $\overline{A} + C$