CSEE 3827: Fundamentals of Computer Systems

Boolean Logic & Boolean Algebra

Agenda (M&K 2.1-2.2, 2.8-2.9)

® Terminology

® Boolean algebra
® | ogic gates

e Circuit fabrication

* NAND, NOR
e DUAL

e XOR

Terminology

e Digital / Binary / Boolean: O = False, 1 = True

e Binary Variable: a symoblic representation of a value that might be 0 or 1,
eg., X Y,AB

e Complement (e.qg., of a variable X): written X : the opposite value of X
X | X
O
110

e |iteral: a boolean variable or its complement (e.g., X, X,

Boolean Logic

e All logical functions can be implemented in terms of three logical operations:

Boolean Logic 2

e Precedence rules just like decimal system
e Implied precedence: NOT > AND > OR

e Use parentheses as necessary

AB + C =(AB) + C

(A + B = (A + B

Terminology cont’d

e Expression: a set of literals (possibly with repeats) combined with logic
operations (and possibly ordered by parentheses)

* e.g., 4 expressions: 42 + C, (AB + C, (A + BC, (A + BC

e Note: can compliment expressions, too, e.g., (CA) + B)C
e Equation: expression1 = expression2

ceg. (A + BC = (A + B

e Function of (possibly several) variables: an equation where the lefthand side is
defined by the righthand side TN
ned by e g HABC = (A + BC

Boolean Logic: Example

Truth Table: all combinations of input variables
k variables =¥ 2% input combinations

_L_L_L_LOOOOD
O] |O|=2|O|=1O0|X>

BSoolean Logic:

—xample 2

Boolean Algebra: Identities and Theorems

OR AND NOT
X+0 = X X1 =X (identity)

X+1 = 1 X0 =0 (null)

X4X = X XX = X (idempotent)

X+—X— =1 XX =0 (complementarity)

(involution)

X+Y = Y+X XY =YX (commutativity)

X+(Y+2) = (X+Y)+Z X(YZ) = (XY)Z (associativity)

X+YZ = (X+Y)(X+2) (distributive)

XYY=X+Y (DeMorgan’s theorem)

Boolean Algebra: Example

Simplify this equation using algebraic manipulation.

Soolean Algebra: Example 2

Find the complement of F.

F=AB + AB
E

DeMorgan’s Theorem

¢ Procedure for complementing expressions

e Remove the “big bar” over AND or OR of 2 (or more) functions
(e.g., F & G) and replace...

e AND with OR, OR with AND
e 1 with O, O with 1

e function F with F F with F

DeMorgan’s Practice

ABC + ACD + BC

Circuit Representation

¢ Information flows from left to right

e Input(s) all the way on the left, output(s) on the right

ko z-%

NOT gate or
inverter

These circuits consume area, power, and time

Goal: minimize the amount of circuitry to compute the desired function

We simplify to reduce required circuitry...

F=XYZ + XYZ + XZ

;Y(Z -+ Z > + X2 (Ay reverse dis Z(/‘/‘AL(Z‘/‘O/'»

T(Yl + X2 (Ay COMP/ eMenZ‘ar/‘Z‘y>

T(Y + X2 (Ay /‘a/enf/"éy>

Circuit view

wire connector: black dot signifies wires are connected
Do

<

[>o—'

(a) F=XYZ + XYZ + XZ

o

LT

L]

(b) F = XY + XZ

Universal gates: NAN

Dt
Note: the “o” In a circuit
represents a NOT (inverter)

Different from “®” which
represents wire connector

\,

NAN

D and NO

R universal because...

e NOT, AND, OR can each be implemented using only NAND gates

e NOT, AND, OR can each be implemented using only NOR gates

A = A nanp A A=A nor A

AB = A nano B A+B = A nor B

A+B = A nao B AB = A nor B

uals

uals

¢ All boolean expressions have duals

e Any theorem you can prove, you can also prove for its dual

e To form a dual...

e replace AND with OR, OR with AND

¢ replace 1 with 0, O with 1

What is the dual of this theorem?

Duals and Complements

XY =X+Y X +Y = XY

Note: to complement a function, compute its dual and complement literals

“Complement using Dual” example

F=X+AZ+X(Y+W)+Y(Z+W)

Can be used for gate manipulation.

Converting circuits to all-NAND (or all-NOR)

e \Work from right to left

e \When manipulating an (AND or OR) gate, stick in pairs of NOT gates to get it
In “appropriate” form

e |solated NOT gates are easily implemented as a NAND (NOR) gate

DeMorgan

e example manipulations (for NAND gates)

—=> —] P

Convert-to-all-NAND example

D_

Convert-to-all-NAND example

D_

XOR: the parity operation

e X®Y =XY + XY

® In general, represents parity, I.e.,

e X1 ®Xo® X3 @ ... ® Xk =1 when an odd number of X = 1

