CSEE 3827: Fundamentals of Computer Systems

Boolean Logic & Boolean Algebra

Agenda (M&K 2.1-2.2, 2.8-2.9)

- Terminology
- Boolean algebra
- Logic gates
- Circuit fabrication
 - NAND, NOR
- DUAL
- XOR

Terminology

- Digital / Binary / Boolean: 0 = False, 1 = True
- Binary Variable: a symoblic representation of a value that might be 0 or 1, e.g., X, Y, A, B
- Complement (e.g., of a variable X): written \overline{X} : the opposite value of X

• Literal: a boolean variable or its complement (e.g., X, X, Y)

Boolean Logic

• All logical functions can be implemented in terms of three logical operations:

Boolean Logic 2

- Precedence rules just like decimal system
- Implied precedence: NOT > AND > OR
- Use parentheses as necessary

$$AB + C = (AB) + C$$

$$(A + B)C = ((A) + B)C$$

Terminology cont'd

- Expression: a set of literals (possibly with repeats) combined with logic operations (and possibly ordered by parentheses)
 - e.g., 4 expressions: AB + C, (AB) + C, $(\overline{A} + B)C$, $((\overline{A}) + B)C$

 $(\overline{A} + B)C$

- Note: can compliment expressions, too, e.g.,
- Equation: expression1 = expression2
 - e.g., $(A + B)C = (\overline{A} + B)C$
- Function of (possibly several) variables: an equation where the lefthand side is defined by the righthand side $\mathcal{F}(\mathcal{A},\mathcal{B},\mathcal{C}) = (\overline{\mathcal{A}} + \mathcal{B})\mathcal{C}$

Boolean Logic: Example

Truth Table: all combinations of input variables k variables $\rightarrow 2^k$ input combinations

D	Х	А	$\overline{DX} + A$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean Logic: Example 2

Boolean Algebra: Identities and Theorems

OR	AND	NOT	
X+0 = X	X1 = X		(identity)
X+1 = 1	X0 = 0		(null)
X + X = X	XX = X		(idempotent)
X + X = 1	$\overline{XX} = 0$		(complementarity)
		$\overline{X} = X$	(involution)
X+Y = Y+X	XY = YX		(commutativity)
X+(Y+Z) = (X+Y)+Z	X(YZ) = (XY)Z		(associativity)
X(Y+Z) = XY + XZ	X+YZ = (X+Y)(X+Z)		(distributive)
$\overline{X+Y} = \overline{X}\overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$		(DeMorgan's theorem)

Boolean Algebra: Example

Simplify this equation using algebraic manipulation.

$$\mathsf{F} = \overline{\mathsf{X}}\mathsf{Y}\mathsf{Z} + \overline{\mathsf{X}}\overline{\mathsf{Y}}\overline{\mathsf{Z}} + \mathsf{X}\mathsf{Z}$$

Boolean Algebra: Example 2

Find the complement of F.

$$F = A\overline{B} + \overline{A}B$$

 $\overline{F} =$

DeMorgan's Theorem

- Procedure for complementing expressions
- Remove the "big bar" over AND or OR of 2 (or more) functions (e.g., F & G) and replace...
 - AND with OR, OR with AND
 - 1 with 0, 0 with 1
 - function F with \overline{F} , \overline{F} with F

$\overline{FG} = \overline{F} + \overline{G}$	
$\overline{F} + \overline{G} = \overline{F}\overline{G}$	

DeMorgan's Practice

Circuit Representation

- Information flows from left to right
- Input(s) all the way on the left, output(s) on the right

These circuits consume area, power, and time

Goal: minimize the amount of circuitry to compute the desired function ¹⁴

We simplify to reduce required circuitry...

 $F = \overline{XYZ} + \overline{XYZ} + XZ$ $\overline{XY(Z + Z)} + XZ \quad (by reverse distribution)$ $\overline{XY1} + XZ \quad (by complementarity)$ $\overline{XY} + XZ \quad (by identity)$

Circuit view

wire connector: black dot signifies wires are connected

Universal gates: NAND, NOR

Х	У	$z = \overline{xy}$
0	0	1
0	1	1
1	0	1
1	1	0

Note: the "o" in a circuit represents a NOT (inverter)

X	У	$z = \overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

Different from "•" which represents wire connector

X+Y

NAND and NOR universal because...

- NOT, AND, OR can each be implemented using only NAND gates
- NOT, AND, OR can each be implemented using only NOR gates

$\overline{A} = A \text{ nand } A$	$\overline{A} = A \operatorname{NOR} A$
$AB = \overline{A}_{NAND} B$	$A+B = \overline{A \text{ NOR } B}$
$A+B = \overline{A} \text{ NAND } \overline{B}$	$AB = \overline{A} \operatorname{NOR} \overline{B}$

Duals

Duals

- All boolean expressions have duals
- Any theorem you can prove, you can also prove for its dual
- To form a dual...
 - replace AND with OR, OR with AND
 - replace 1 with 0, 0 with 1

What is the dual of this theorem?

Duals and Complements

Note: to complement a function, compute its dual and complement literals

"Complement using Dual" example

$$F = X + A (Z + \overline{X} (Y + W) + \overline{Y} (Z + W))$$

Can be used for gate manipulation.

Converting circuits to all-NAND (or all-NOR)

- Work from right to left
- When manipulating an (AND or OR) gate, stick in pairs of NOT gates to get it in "appropriate" form
- Isolated NOT gates are easily implemented as a NAND (NOR) gate
- example manipulations (for NAND gates)

Convert-to-all-NAND example

Convert-to-all-NAND example

Each "o" by itself represents a NOT gate

XOR: the parity operation

• $X \oplus Y = X\overline{Y} + \overline{X}Y$

- In general, represents parity, i.e.,
- $X_1 \oplus X_2 \oplus X_3 \oplus ... \oplus X_k = 1$ when an odd number of $X_i = 1$