CSEE 3827: Fundamentals of Computer Systems

Lecture 1: Introduction

1/20/10

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Course website

http://www.cs.columbia.edu/~martha/courses/3827/sp10/

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

What does this ...

[Source: http://ftp.arl.army.mil/~mike/comphist]

... have in common with this?

growth in performance = growth in raw resources + system design innovation

ENIAC (1946)	Intel Larrabee (projected 2010)	
5,000 operations per second	2,000,000,000,000 operations per second	400,000,000x faster
8.5' x 3' x 80' (2040 ft ³)	49.5 mm ²	1,167,000,000x smaller
\$500,000	~\$300	1666x cheaper

growth in performance = growth in raw resources + system design innovation

Gordon Moore co-founder of Intel

Moore's Law: Density of transistors doubles every two years

Date of introduction

growth in performance = growth in raw resources + system design innovation

Agenda

- Administrative details
- Course introduction
- Information representation and definitions

Number systems: Base 10 (Decimal)

- 10 digits = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- example: 4537.8 = (4537.8) ₁₀

Number systems: Base 2 (Binary)

- 2 digits = {0,1}
- example: $1011.1 = (1011.1)_2$

Number systems: Base 8 (Octal)

- 8 digits = $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- example: (2365.2) ₈

Number systems: Base 16 (Hexadecimal)

- 16 digits = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
- example: (26BA) [alternate notation for hex: 0x26BA]

Hexadecimal (or hex) is often used for addressing

Number ranges

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...
 - ... 5 digits in decimal?

10⁵ possible values

... 8 binary digits?

28 possible values

... 4 hexadecimal digits?

164 possible values

Need a bigger range?

- Change the encoding.
- Floating point (used to represent very large numbers in a compact way)
 - A lot like scientific notation: 5.4×10^{5} exponent mantissa
 - Except that it is binary: 1011 1001 x 2

What about negative numbers?

- Change the encoding.
 - Sign and magnitude
 - Ones compliment
 - Twos compliment

Sign and magnitude

- Most significant bit is sign
- Rest of bits are magnitude

 $0110 = (6)_{10}$

$$1110 = (-6)_{10}$$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1000 = (-0)_{10}$

Ones compliment

- Compliment bits in positive value to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$

$$1001 = (-6)_{10}$$

• Two representations of zero

 $0000 = (0)_{10} \qquad 1111 = (-0)_{10}$

Twos compliment

- Compliment bits in positive value and add 1 to create negative value
- Most significant bit still a sign bit

 $0110 = (6)_{10}$ $1001 + 1 = 1010 = (-6)_{10}$

- One representation of zero
 - $0000 = (0)_{10} \qquad 1000 = (-8)_{10} \qquad 1111 = (-1)_{10}$
- One more negative number than positive

MIN: $1000 = (-8)_{10}$ MAX: $0111 = (7)_{10}$

How about letters?

• Change the encoding.

American Standard Code for Information Interchange (ASCII)								
	$\mathbf{B}_7 \mathbf{B}_6 \mathbf{B}_5$							
B ₄ B ₃ B ₂ B ₁	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	Р		р
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	х
1001	HT	EM)	9	Ι	Y	i	У
1010	LF	SUB	*	:	J	Ζ	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	Ň	1	Ĩ
1101	CR	GS	-	=	Μ]	m	}
1110	SO	RS		>	Ν	^	n	~
1111	SI	US	/	?	0	_	0	DE

TABLE 1-5 American Standard Code for Information Interchange (ASCII)

Gray code

Binary numeric encoding where successive numbers differ by only 1 bit

value	BCD	# bit flips	Gray	# bit flips
0	000	З	000	1
1	001	1	001	1
2	010	2	011	1
3	011	1	010	1
4	100	3	110	1
5	101	1	111	1
6	110	2	101	1
7	111	1	100	1

Some definitions

- bit = a binary digit e.g., 1 or 0
- byte = 8 bits e.g., 01100100
- word = a group of bytes

a 16-bit word = 2 bytes e.g., 1001110111000101

a 32-bit word = 4 bytes e.g., 100111011100010101110111000101

Next class: binary logic, logic gates