CSEE 3827: Fundamentals of Computer Systems

Single Cycle MIPS Implementation




Outline

e \We will examine two MIPS implementations
* A single-cycle version
¢ A pipelined version
e Simple subset of MIPS, showing most aspects
e Memory reference: lw, sw
e Arithmetic/logical: add, sub, and, or, slt
e Control transfer: beq, |
e Next unit: CPU performance factors
¢ Instruction count (determined by ISA and compiler)

e Cycles per instruction and cycle time (determined by CPU hardware)




INnstruction Execution

e PC — instruction memory, fetch instruction
e Register numbers — reqister file, read registers
® Depending on instruction class:
e Use ALU to calculate:
e Arithmetic or logical result
e Memory address for load/store
e Branch target address
e Access data for load/store

e PC + target address or PC + 4
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FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross. Copyright © 2009 Elsevier, Inc. All rights reserved.




Can’t just join wires together, use muxes
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FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross. Copyright © 2009 Elsevier, Inc. All rights reserved.




Controller generates selects for the Muxes (and some other stuff)
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FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction)
or the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to
determine whether the second ALU input is from the registers (for an arithmetic-logical instruction OR a branch) or from the offset field of
the instruction (for a load or store). The added control lines are straightforward and determine the operation performed at the ALU, whether
the data memory should read or write, and whether the registers should perform a write operation. The control lines are shown in color to
make them easier to see. Copyright © 2009 Elsevier, Inc. All rights reserved.




Combinational Elements

e AND gate (Y = A & B) e Adder (Y = A + B)
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Clocking Methodology

Combinational logic transforms data during clock cycles.
Longest combinational delay determines clock period.

State
element Combinational logic
1

Clock cycle ——

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they
will not change until after the clock edge) before the active clock edge causes the state to be updated. All state
elements in this chapter, including memory, are assumed to be edge-triggered. Copyright © 2009 Elsevier, Inc.
All rights reserved.
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FIGURE 4.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown
in this figure. Copyright © 2009 Elsevier, Inc. All rights reserved.




Sullding a datapath incrementally

e Datapath: elements that process data and addresses in the CPU

e Datapath will execute one instruction in one clock cycle

e Each datapath element can only do one function at a time

® Hence, we need separate instruction and data memories

e Use multiplexers where alternate data sources are used for different
Instructions




INnstruction Fetch

e Fetch Instruction contained in PC register from memory

e Compute PC + 4 for next instruction

Instruction
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a. Instruction memory b. Program counter c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output. Copyright © 2009 Elsevier, Inc. All rights reserved.




Part 1: Instruction Fetch

Instruction
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath. Copyright © 2009
Elsevier, Inc. All rights reserved.




R-Format Instructions

e Read two register operands
e Perform arithmetic/logical operation

e \Write register result
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FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section C.8 of ()] Appendix C. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to
the register file are edge-triggered, our design can legally read and write the same register within a clock cycle:
the read will get the value written in an earlier clock cycle, while the value written will be available to a read in
asubsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas
the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with
the ALU operation signal, which will be 4 bits wide, using the ALU designed in (@) Appendix C. We will
use the Zero detection output of the ALU shortly to implement branches. The overflow output will not be
needed until Section 4.9, when we discuss exceptions; we omit it until then. Copyright © 2009 Elsevier, Inc.
All rights reserved.




L oad/Store Instructions

e Read register operands
e Calculate address using 16-bit offset (sign-extend offset and use ALU)
¢ |_oad: read memory and update register

e Store: write register value to memory

‘ MemWrite

Read

Address data

Sign-
Data extend

Write memory
data

MemRead

a. Data memory unit b. Sign extension unit

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sigh extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit input that
is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is
edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes.
Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work
with real memory chips. See Section C.8 of [@) Appendix C for further discussion of how real memory
chips work. Copyright © 2009 Elsevier, Inc. All rights reserved.




3-Type/Load/Store Datapath

Read ALU operation

register 1
MemWrite
data 1

Read MemtoRe
Instruction | register 2 Zero g
ALU Ay Read

Write Registers Read Address

r— result data
register data 2

»| Write
data Data

Write
RegWrite data memory

Sign- 32 MemRead
extend

\V

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed,
as described in the example. Copyright © 2009 Elsevier, Inc. All rights reserved.




Sranch Instructions

e Read register operands

e Compare operands (use ALU: subtract and check zero output)

e Calculate target address

e Sign-extend displacement

e Shift left two places (word displacement)

e Add to PC+4 (already calculated by instruction fetch)




Part 3: Instruction Fetch w. Branch
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FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition
and a separate adder to compute the branch target as the sum of the incremented PC
and the sign-extended, lower 16 bits of the instruction (the branch displacement), shifted
left 2 bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that
adds 004, to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since
the amount of the “shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift
will throw away only “sign bits.” Control logic is used to decide whether the incremented PC or branch target
should replace the PC, based on the Zero output of the ALU. Copyright © 2009 Elsevier, Inc. All rights
reserved.




Datapath
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FIGURE 4.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store word, ALU
operations, and branches) in a single clock cycle. An additional multiplexor is needed to integrate branches. The support for jumps will be
added later. Copyright © 2009 Elsevier, Inc. All rights reserved.




Datapath Control Scheme
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures. Copyright © 2009
Elsevier, Inc. All rights reserved.




ALU Control Inputs/Outputs

Main Control
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ALU Control Implementation

XXxXxXxXx — load word add

XXXXXX — store word add 0010
XXXXXX — branch equal subtract 0110
100000 — add add 0010
100010 — subtract subtract 0110
100100 — AND — AND 0000
100101 — OR — OR 0001

101010 — set on less than — set on less than —» 0111




AlLU Control Truth Table
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AlLU Control Truth Table 2

S Awoe | Fumctiew
“awops | awope | 75 [ 74 [rs [ r2 [ i v | oporation
X X X X X X 0010
0110
0010
0110
0000
0001
0111

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are
the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first
2 bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced with XX
in the truth table. Copyright © 2009 Elsevier, Inc. All rights reserved.




Datapath Control Scheme
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures. Copyright © 2009
Elsevier, Inc. All rights reserved.




Main control signals derive from instruction types
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R-Type Control Signals

ALU
>Addresult

', J RegDst

| \ BranchQ
( \ MemRead
Instruction [31-26] | | MemtoReg
>|Control ALUOD
.. | MemWrite
| ALUSrc

\. / RegWrite

.Instrucnon [256-21] N Re@"t 1
register 1 g4
Instruction [20-16] Read data 1

Instruction _I " register 2 ALL Zero
B31-0] Write Read ALU

Instruction | | ||nstnuction [15-11] register data2 result
memory | ¢ -
Write

data Registers

Read
address

Instruction [15-0] 18 [ sign-

"

* lextend

[ A ||
\control)

Instruction [5-0] | 10
(Alt. illustration: Fig. 4.19) AI




1w Control Signals
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sw Control Signals
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beqg Control Signals
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Main Control Truth Table
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FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first
row of the table corresponds to the R-format instructions (add, sub, AND, OR, and s 1t). For all these instructions, the source register fields
are rs and rt, and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction
writes a register (RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOPp field for R-type
instructions is set to 10 to indicate that the ALU control should be generated from the funct field. The second and third rows of this table
give the control signal settings for 1w and sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and
MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt
register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch
is set for a subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal
is 0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last
two rows of the table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of don’t care must
be added by the designer, since it depends on knowledge of how the datapath works. Copyright © 2009 Elsevier, Inc. All rights reserved.




The j Instruction

e Unconditional jump to instruction at 1label

i label

¢ Instruction encoded in J-type format

2
31:26

¢ Jump uses word addresses

e Update PC with concatenation of:
e Top 4 bits of old PC
® 26-bit jump address
e 00




Implementing the jump instruction
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