
CSEE 3827: Fundamentals of Computer Systems

Instruction Set Architectures / MIPS

… and the rest of the semester

2

Application
executable
(e.g., *.exe)

Source code
(e.g., *.java, *.c)

Compiler

(hardware)

(software)

General purpose
processor

(e.g., Power PC,
Pentium, MIPS)

MIPS instruction set architecture

Single-cycle MIPS processor

Performance analysis

Optimization (pipelining, caches)

Topics in modern computer architecture
(multicore, on-chip networks, etc.)

A second view

3

(high level code)

(assembly code)

(machine code)

Assembly Code v. Machine Code

• An instruction has two forms: Assembly and Machine

• Assembly: human-readable form,

• e.g., add t1, s0, s2 -- says take values in registers s0 and s2, add them
together, store result in register t1

• Machine: bits that actually store the instruction - that feed into the various
MUXs, decoders, selector bits to produce the desired computation and/or
operation:

• e.g., add t1, s0, s2 is 00000010 00110010 01000000 00100000 in binary

• An assembler is software that converts a text file of assembly code into a
binary file of machine code

• very straightforward (trivial) process: each instruction converts quite easily

• One “smart” thing assembler does is permit labels for branches and jumps
(discussed more later).

4

What is an ISA?

• An Instruction Set Architecture, or ISA, is an interface between the hardware
and the software.

• An ISA consists of:

• a set of operations (instructions)

• data units (sized, addressing modes, etc.)

• processor state (registers)

• input and output control (memory operations)

• execution model (program counter)

5

Why have an ISA?

• An ISA provides binary compatibility across machines that share the ISA

• Any machine that implements the ISA X can execute a program encoded
using ISA X.

• You typically see families of machines, all with the same ISA, but with different
power, performance and cost characteristics.

• e.g., the MIPS family: Mips 2000, 3000, 4400, 10000

6

RISC machines

• RISC = Reduced Instruction Set Computer

• All operations are of the form Rd Rs op Rt

• MIPS (and other RISC architectures) are “load-store” architectures, meaning
all operations performed only on operands in registers. (The only instructions
that access memory are loads and stores)

• Alternative to CISC (Complex Instruction Set Computer) where operations are
significantly more complex.

7

MIPS History

• MIPS is a computer family

• Originated as a research project at Stanford under the direction of John
Hennessy called “Microprocessor without Interlocked Pipe Stages”

• Commercialized by MIPS Technologies

• purchased by SGI

• used in previous versions of DEC workstations

• now has large share of the market in the embedded space

8

Simple View of ISA: CPU + Memory

• CPU breaks down into
• Register file: current data being operated upon
• Function Unit: combinational logic that does the computation
• Control: Keeps track of current program instruction

• Memory: big storage tank
• program(s) to be / being executed
• data (used by the above programs)
• special structures (not pictured): heap, stack (discussed later)

• Program memory “looked at” by CPU (actually read in) while being executed
• Data is transferred to register file to be “worked on”, transferred back when done

9

CPU
Register

File

Function
Unit

Control

Memory
Program 1

Program 2

Program n

P1 Data

P2 Data

Pn Data

...

...

addr

enable
R/W

What is an ISA?

• An Instruction Set Architecture, or ISA, is an interface between the hardware
and the software.

• An ISA consists of:

• a set of operations (instructions)

• data units (sized, addressing modes, etc.)

• processor state (registers)

• input and output control (memory operations)

• execution model (program counter)

10

32-bit data word

32, 32-bit registers

32-bit program counter

load and store

arithmetic, logical,
conditional, branch, etc.

(for MIPS)

Register Operands

• Arithmetic instructions get their operands from registers

• MIPS’ 32x32-bit register file is

• used for frequently accessed data

• numbered 0-31

• Registers indicated with $<id>

• $t0, $t1, …, $t9 for temporary values

• $s0, $s1, …, $s7 for saved values

11

CSEE 3827, Fall 2009

Registers v. Memory

• Registers are faster to access than memory

• Operating on data in memory requires loads and stores

• (More instructions to be executed)

• Compiler should use registers for variables as much as possible

• Only spill to memory for less frequently used variables

• Register optimization is important for performance

12

Arithmetic Instructions

• Addition and subtraction

• Three operands: two source, one destination

• add a, b, c # a gets b + c

• All arithmetic operations (and many others) have this form

13

Design principle:

Regularity makes implementation simpler

Simplicity enables higher performance at lower cost

Arithmetic Example 1

14

f = (g + h) - (i + j)

C code Compiled MIPS

add t0, g, h # temp t0=g+h
add t1, i, j # temp t1=i+j
sub f, t0, t1 # f = t0-t1

Arithmetic Example 1 w. Registers

15

Compiled MIPS

add t0, g, h # temp t0=g+h
add t1, i, j # temp t1=i+j
sub f, t0, t1 # f = t0-t1

Compiled MIPS w. registers

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s5, $t0, $t1

store: f in $s0, g in $s1, h in $s2, i in $s3, and j in $s4

Memory Operands

• Main memory used for composite data (e.g., arrays, structures, dynamic data)

• To apply arithmetic operations

• Load values from memory into registers (load instruction = mem read)

• Store result from registers to memory (store instruction = mem write)

• Memory is byte-addressed (each address identifies an 8-bit byte)

• Words (32-bits) are aligned in memory (meaning each address must be a multiple
of 4)

• MIPS is big-endian (i.e., most significant byte stored at least address of the word)

16

Memory Operand Example 1

17

g = h + A[8]

C code

Compiled MIPS

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

g in $s1, h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)

offset base register

Memory Operand Example 2

18

A[12] = h + A[8]

C code

Compiled MIPS

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)
index = 12 requires offset of 48 (12 items x 4 bytes per word)

Registers v. Memory

• Registers are faster to access than memory

• Operating on data in memory requires loads and stores

• (More instructions to be executed)

• Compiler should use registers for variables as much as possible

• Only spill to memory for less frequently used variables

• Register optimization is important for performance

19

Immediate Operands

• Constant data encoded in an instruction

• No subtract immediate instruction, just use the negative constant

20

Design principle: make the common case fast

Small constants are common

Immediate operands avoid a load instruction

addi $s3, $s3, 4

addi $s2, $s1, -1

The Constant Zero

• MIPS register 0 ($zero) is the constant 0

• $zero cannot be overwritten

• Useful for many operations, for example, a move between two registers

21

add $t2, $s1, $zero

Representing Instructions

• Instructions are encoded in binary (called machine code)

• MIPS instructions encoded as 32-bit instruction words

• Small number of formats encoding operation code (opcode), register
numbers, etc.

22

Register Numbers

23

The big picture: How a C program is executed

24

Stored Program Computers

• Instructions represented in
binary, just like data

• Instructions and data stored in
memory

• Programs can operate on
programs (e.g., compilers,
linkers)

• Thanks to standardized ISAs,
binary compatibility allows
compiled programs to work on
different computers.

25

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

MIPS instructions to date

26

MIPS R-format Instructions

• Instruction fields

• op: operation code (opcode)

• rs: first source register number

• rt: second source register number

• rd: register destination number

• shamt: shift amount (00000 for now)

• funct: function code (extends opcode)

27

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-format Example

28

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

MIPS I-format Instructions

• Includes immediate arithmetic and load/store operations

• op: operation code (opcode)

• rs: first source register number

• rt: destination register number

• constant: offset added to base address in rs, or immediate operand

29

op rs rt constant
6 bits 5 bits 5 bits 16 bits

MIPS Logical Operations

• Instructions for bitwise manipulation

• Useful for inserting and extracting groups of bits in a word

30

Shift Operations

• Shift left logical (op = sll)

• Shift left and fill with 0s

• sll by i bits multiplies by 2

• Shift right logical (op = srl)

• Shift right and fill with 0s

• srl by i bits divides by 2 (for unsigned values only)

• shamt indicates how many positions to shift

• example: sll $t2, $s0, 4 # $t2 = $s0 << 4 bits

• R-format

31

0 0 16 10 4 0

i

i

AND Operations

• example: and $t0, $t1, $t2 # $t0 = $t1 & $t2

• Useful for masking bits in a word (selecting some bits, clearing others to 0)

32

0000 0000 0000 0000 0000 1101 1100 0000$t1:

0000 0000 0000 0000 0011 1100 0000 0000$t2:

0000 0000 0000 0000 0000 1100 0000 0000$t0:

OR Operations

• example: or $t0, $t1, $t2 # $t0 = $t1 | $t2

• Useful to include bits in a word (set some bits to 1, leaving others unchanged)

33

0000 0000 0000 0000 0000 1101 1100 0000$t1:

0000 0000 0000 0000 0011 1100 0000 0000$t2:

0000 0000 0000 0000 0011 1101 1100 0000$t0:

NOT Operations

• Useful to invert bits in a word

• MIPS has 3 operand NOR instruction, used to compute NOT

• example: nor $t0, $t1, $zero # $t0 = ~$t1

34

0000 0000 0000 0000 0000 1101 1100 0000$t1:

1111 1111 1111 1111 1111 0010 0011 1111$t0:

Conditional Operations

• Branch to a labeled instruction if a condition is true

• Otherwise, continue sequentially

• Instruction labeled with colon e.g. L1: add $t0, $t1, $t2

• beq rs, rt, L1 # if (rs == rt) branch to instr labeled L1

• bne rs, rt, L1 # if (rs != rt) branch to instr labeled L1

• j L1 # unconditional jump to instr labeled L1

35

Compiling an If Statement

36

if (i == j)
 f = g+h
else
 f = g-h

C code

Compiled MIPS

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else:
sub $s0, $s1, $s2

Exit:

• Where, f is in $s0, g is in $s1, and h is in $s2

• The assembler calculates the addresses corresponding to the labels

Compiling a Loop Statement

37

while (save[i] == k)
 i += 1

C code

Compiled MIPS

Loop:
sll $t1, $s3, 2
add $t1, $t1, $s5
lw $t0, 0($t1)
bne $t0, $s4, Exit
addi $s3, $s3, 1
j Loop

Exit:

• Where, i is in $s3, k is in $s4, address of save in $s5

Basic Blocks

• A basic block is a sequence of instructions with

• No embedded branches except at the end

• No branch targets except at the beginning

• A compiler identifies basic blocks for optimization

• Advanced processors can accelerate execution of
basic blocks

38

More Conditional Operations

• Set result to 1 if a condition is true

• slt rd, rs, rt # (rs < rt) ? rd=1 : rd=0

• slti rd, rs, constant # (rs < constant) ? rd=1 : rd=0

• Use in combination with beq or bne

39

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

• Why not blt, bge, etc.?

• Hardware for <, >= etc. is slower than for = and !=

• Combining with a branch involves more work per instruction, requiring a
slower clock

• All instructions penalized because of this

• As beq and bne are the common case, this is a good compromise

40

Signed v. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

• Example:

41

1111 1111 1111 1111 1111 1111 1111 1111$s0:

0000 0000 0000 0000 0000 0000 0000 0001$s1:

slt $t0, $s0, $s1 # signed: -1 < 1 thus $t0=1
sltu $t0, $s0, $s1 # unsigned: 4,294,967,295 > 1 thus $t0=0

Procedure Calling

• Steps required:

1. Place parameters in registers

2. Transfer control to procedure

3. Aquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

42

Register Usage

• $a0-$a3: arguments

• $v0, $v1: result values

• $t0-$t9: temporaries, can be overwritten by callee

• $s0-$s7: contents saved (must be restored by callee)

• $gp: global pointer for static data

• $sp: stack pointer

• $fp: frame pointer

• $ra: return address

43

Memory Layout

• Text: program code

• Static data: global variables

• e.g., static variables in C, constant arrays
and strings

• $gp initialized to an address allowing +/-
offsets in this segment

• Dynamic data: heap

• e.g., malloc in C, new in Java

• Stack: automatic storage

44

Local Data on the Stack

• Local data allocated by the callee

• Procedure frame (activation record) used by some compilers to manage stack
storage

45

Cross-call Data Preservation

46

Procedure Call Instructions

• Procedure call: jump and link

• jal ProcedureLabel

• Address of following instruction put in $ra

• Jumps to target address

• Procedure return: jump register

• jr $ra

• copies $ra to program counter

• can also be used for computed jumps (e.g., for case/switch statements)

47

Leaf Procedure Example

48

int leaf_example(int g,h,i,j) {
 int f;
 f = (g+h) - (i+j);
 return f;
}

C code

• Arguments g, h, i, j in $a0 - $a3

• f will go in $s0 (so will have to save existing contents of $s0 to stack)

• result in $v0

Leaf Procedure Example 2

49

Compiled MIPS

leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a2
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

save $s0 on stack

procedure body

result

restore $s0

return

int leaf_example(int g,h,i,j) {
 int f;
 f = (g+h) - (i+j);
 return f;
}

C code

Non-Leaf Procedures

50

• A non-leaf procedure is a procedure that calls another procedure

• For a nested call, the caller needs to save to the stack

• Its return address

• Any arguments and temporaries needed after the call

• After the call, the caller must restore these values from the stack

Non-Leaf Procedure Example

51

int fact(int n) {
 if (n < 1) return 1;
 else return (n * fact(n - 1));
}

C code

! fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Non-Leaf Procedure Example 2

52

int fact(int n) {
 if (n < 1) return 1;
 else return (n * fact(n - 1));
}

C code

Compiled MIPS

Character Data

• Byte-encoded character sets

• ASCII: 128 characters (95 graphic, 33 control)

• Latin-1: 256 characters (ASCII, + 96 more graphic characters)

• Unicode: 32-bit character set

• Used in Java, C++ wide characters

• Most of the world’s alphabets, plus symbols

• UTF-8, UTF-16 are variable-length encodings

53

Byte/Halfword Operations

• Could use bitwise operations

• MIPS has byte/halfword load/store

• lb rt, offset(rs) # sign extend byte to 32 bits in rt

• lh rt, offset(rs) # sign extend halfword to 32 bits in rt

• lbu rt, offset(rs) # zero extend byte to 32 bits in rt

• lhu rt, offset(rs) # zero extend halfword to 32 bits in rt

• sb rt, offset(rs) # store rightmost byte

• sh rt, offset(rs) # store rightmost halfword

54

String Copy Example

• Null-terminated string

• Addresses of x and y in $a0 and $a1 respectively

• i in $s0

55

void strcpy (char x[], char y[]) {
 int i;
 i = 0;
 while ((x[i]=y[i]) != ‘\0’)
 i += 1;
}

C code (naive)

String Copy Example 2

56

void strcpy (char x[], char y[]) {
 int i;
 i = 0;
 while ((x[i]=y[i]) != ‘\0’)
 i += 1;
}

C code (naive)
! strcpy :

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Compiled MIPS

32-bit constants

• Most constants are small, 16 bits usually sufficient

• For occasional, 32-bit constant:

• copies 16-bit constant to the left (upper) bits of rt

• clears right (lower) 16 bits of rt to 0

• example usage:

57

lui rt, constant

0000 0000 0111 1101 0000 0000 0000 0000$s0:lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000$s0:ori $s0, $s0, 2304

Branch Addressing

• Branch instructions specify: opcode, two registers, branch target

• Most branch targets are near branch (either forwards or backwards)

• PC-relative addressing

• target address = PC + (offset * 4)

• PC already incremented by four when the target address is calculated

58

op rs rt constant
6 bits 5 bits 5 bits 16 bits

Jump Addressing

• Jump (j and jal) targets could be anywhere in a text segment, so, encode the
full address in the instruction

• target address = PC[31:28] : (address * 4)

59

op address
6 bits 26 bits

9
9

4
0
0
2
1

0
32

Target Addressing Example

• Loop code from earlier example

• Assume loop at location 80000

60

Loop: sll $t1, $s3, 2
 add $t1, $t1, $s5
 lw $t0, 0($t1)
 bne $t0, $s4, Exit
 addi $s3, $s3, 1
 j Loop
Exit:

80000
80004
80008
80012
80016
80020
80024

0
0
35
5
8
2

0
9
9
8
19

19
21
8
20
19
20000

Addressing Mode Summary

61

Branching Far Away	

• If a branch target is too far to encode with a 16-bit offset, assembler rewrites
the code

• Example:

62

 bne $s0,$s1, L2
 j L1
L2:!…

! beq $s0,$s1, L1 becomes

Assembler Pseudoinstructions

• Most assembler instructions represent machine instructions, one to one.

• Pseudoinstructions are shorthand. They are recognized by the assembler but
translated into small bundles of machine instructions.

• $at (register 1) is an “assembler temporary”

63

move $t0,$t1 add $t0,$zero,$t1becomes

blt $t0,$t1,L slt $at,$t0,$t1
 bne $at,$zero,L

becomes

Programming Pitfalls

• Sequential words are not at sequential addresses -- increment by 4 not by 1!

• Keeping a pointer to an automatic variable (on the stack) after procedure
returns

64

In conclusion: Fallacies

1. Powerful (complex) instructions lead to higher performance

• Fewer instructions are required

• But complex instructions are hard to implement. As a result implementation may
slow down all instructions including simple ones.

• Compilers are good at making fast code from simple instructions.

2. Use assembly code for high performance

• Modern compilers are better than predecessors at generating good assembly

• More lines of code (in assembly) means more errors and lower productivity

65

In conclusion: More Fallacies

3. Backwards compatibility means instruction set doesn’t change

66

