CSEE 3827: Fundamentals of Computer Systems

Instruction Set Architectures / MIPS

... and the rest of the semester

Source code
(e.qg., *.java, *.c) \

Compiler

/

Application

executable
(e.g., *.exe) Single-cycle MIPS processor

ettt ehetetataiaaits Performance analysis
/ Optimization (pipelining, caches)
General purpose /

Processor
(e.g., Power PC,

FEm bl =) \Topics in modern computer architecture
: (multicore, on-chip networks, etc.)

MIPS instruction set architecture

(hardware) 5

A second view

High-level swap(int v[], int k)
language {int temp;
program temp = v[k];

it o Sy (high level code)

Assembly

language muli $2, $5,4
program add $2, $4,%2
(for MIPS) w815, 0(52) (assembly code)
Tw $16, 4(3$2)
sw $16, 0($2)
Sw $15, 4(%$2)
Jjr $31

Assembler

Binary machine 00000000101000010000000000011000
language 00000000000110000001100000100001 maC ine CO e
program 10001100011000100000000000000000 (h d)
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000

10101100011000100000000000000100

00000011111000000000000000001000

FIGURE 1.3 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2. Copyright © 2009 Elsevier, Inc.
All rights reserved.

Assembly Code v. Machine Code

e An instruction has two forms: Assembly and Machine

e Assembly: human-readable form,

® e.d., add t1, s0O, s2 -- says take values in registers sO and s2, add them
together, store result in register t1

e Machine: bits that actually store the instruction - that feed into the various

MUXs, decoders, selector bits to produce the desired computation and/or
operation:

® e.g., add t1, s0, s2 is 00000010 00110010 01000000 00100000 In binary

e An assembler is software that converts a text file of assembly code into a
binary file of machine code

e very straightforward (trivial) process: each instruction converts quite easily

e One “smart” thing assembler does is permit labels for branches and jumps
(discussed more later).

What is an ISA?

e An Instruction Set Architecture, or ISA, is an interface between the hardware
and the software.

e An ISA consists of:
e a set of operations (instructions)

e data units (sized, addressing modes, etc.)

® processor state (registers)

e input and output control (memory operations)

e execution model (program counter)

Why have an ISA?

e An ISA provides binary compatibility across machines that share the ISA

e Any machine that implements the ISA X can execute a program encoded
using ISA X.

e You typically see families of machines, all with the same ISA, but with different
power, performance and cost characteristics.

® e.g., the MIPS family: Mips 2000, 3000, 4400, 10000

RISC machines

¢ RISC = Reduced Instruction Set Computer

e All operations are of the form Rd <« Rs op Rt

e MIPS (and other RISC architectures) are “load-store” architectures, meaning
all operations performed only on operands in registers. (The only instructions
that access memory are loads and stores)

e Alternative to CISC (Complex Instruction Set Computer) where operations are
significantly more complex.

MIPS History

e MIPS is a computer family

e Originated as a research project at Stanford under the direction of John
Hennessy called “Microprocessor without Interlocked Pipe Stages”

e Commercialized by MIPS Technologies

e purchased by SGI

e used in previous versions of DEC workstations

e now has large share of the market in the embedded space

ple View of ISA: C Yy

addr

CPU Memory

Program 1| | P4 Data

Register Control
File

Program 2

P> Data

Function Program n

Unit enable P, Data
R/W

e CPU breaks down into
e Register file: current data being operated upon
¢ Function Unit: combinational logic that does the computation
e Control: Keeps track of current program instruction
e Memory: big storage tank
e program(s) to be / being executed
e data (used by the above programs)
e special structures (not pictured): heap, stack (discussed later)
e Program memory “looked at” by CPU (actually read in) while being executed
e Data is transferred to register file to be “worked on”, transferred back when done

What is an ISA?

e An Instruction Set Architecture, or ISA, is an interface between the hardware
and the software.

(for MIPS)

e An ISA consists of:

arithmetic, logical,

e a set of operations (instructions)« .
conditional, branch, etc.

e data units (sized, addressing modes, etc.) < 32-bit data word

® processor state (registers) « 32, 32-bit regigters

e input and output control (memory operations) < load and store

» execution model (program counter)—— 32-Djt program counter

Register Operands

e Arithmetic instructions get their operands from registers

e MIPS’ 32x32-bit register file is

e used for frequently accessed data

e humbered 0-31

e Registers indicated with $<id>

e $t0, $t1, ..., $t9 for temporary values

o $s0, $s1, ..., $s7 for saved values

Reqisters v. Memory

e Registers are faster to access than memory

e Operating on data in memory requires loads and stores

e (More instructions to be executed)

e Compiler should use registers for variables as much as possible

e Only spill to memory for less frequently used variables

e Register optimization is important for performance

CSEE 3827, Fall 2009

Arithmetic Instructions

e Addition and subtraction
e Three operands: two source, one destination
e add a, b, c # a gets b + c

e All arithmetic operations (and many others) have this form

Design principle:

Reqularity makes implementation simpler

Simplicity enables higher performance at lower cost

Arithmetic Example 1

add t0, g, h # temp t0=g+h
. . add tl1, i, j # temp tl=i+j
f=1(g+h) - (1 + J) sub £, t0, t1 # f = t0-tl

C code Compiled MIPS

Arithmetic Example 1 w. Registers

add t0, g, h # temp t0=g+h
add tl1, 1, jJ # temp tl=i+]
sub £, t0, t1 # £ = t0-tl

Compiled MIPS

store: fin $s0, g in $s1, hin $s2, i in $s3, and j in $s4

add $t0, Ssl, $s2
add Stl, Ss3, S$s4
sub $s5, S$t0, Stl

Compiled MIPS w. registers

Memory Operands

e Main memory used for composite data (e.g., arrays, structures, dynamic data)

e To apply arithmetic operations

¢ |_oad values from memory into registers (load instruction = mem read)

e Store result from registers to memory (store instruction = mem write)

e Memory is byte-addressed (each address identifies an 8-bit byte)

e \Words (32-bits) are aligned in memory (meaning each address must be a multiple
of 4)

e MIPS is big-endian (i.e., most significant byte stored at least address of the word)

Memory Operand

—xample 1

h + A[8]

C code

g in $s1, h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)

offset base register

_/

z 7
lw St0, 32(Ss3)
add $sl1, $s2, $tO

load word

Compiled MIPS

Memory Operand Example 2

A[12] = h + A[8]

C code

h in $s2, base address of A in $s3

index = 8 requires offset of 32 (8 items x 4 bytes per word)
index = 12 requires offset of 48 (12 items x 4 bytes per word)

lw S$St0, 32($s3) # load word
add $t0, $s2, $tO
sw $t0, 48(S$s3) # store word

Compiled MIPS

Reqisters v. Memory

e Registers are faster to access than memory

e Operating on data in memory requires loads and stores

e (More instructions to be executed)

e Compiler should use registers for variables as much as possible

e Only spill to memory for less frequently used variables

e Register optimization is important for performance

Immediate Operands

¢ Constant data encoded in an instruction

addi $s3, S$s3, 4

e No subtract immediate instruction, just use the negative constant

addi $s2, S$sl1, -1

Design principle: make the common case fast

Small constants are common

Immediate operands avoid a load instruction

The Constant Zero

e MIPS register 0 ($zero) is the constant O

e $zero cannot be overwritten

e Useful for many operations, for example, a move between two registers

add $t2, $sl, Szero

Representing Instructions

e Instructions are encoded in binary (called machine code)

e MIPS instructions encoded as 32-bit instruction words

e Small number of formats encoding operation code (opcode), register
numbers, etc.

Reqgister Numbers

Preserved on
Name Register number Usage call?

The constant value 0

$vO $vl Values for results and expression evaluation no

$a0-%a3 Arguments no

$t0-$t/ Temporaries no

Saved yes

More temporaries no

$gp Global pointer yes

$sp Stack pointer yes

$fp Frame pointer yes

$ra Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see
Section 2.12), and registers 2627, called $k0—-$k1, are reserved for the operating system. This information
is also found in Column 2 of the MIPS Reference Data Card at the front of this book. Copyright © 2009
Elsevier, Inc. All rights reserved.

The big picture: How a C program is executed

C program

Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

N

Executable: Machine language program

Memory

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use
linking loaders that perform the last two steps. To identify the type of file, UNIX follows a suffix convention
for files: C source files are named X . ¢, assembly files are X . s, object files are named x . 0, statically linked
library routines are x . a, dynamically linked library routes are x . S0, and executable files by default are called
a.out. MS-DOS uses the suffixes .C, .ASM, .0BJ, . LIB, .DLL, and . EXE to the same effect. Copyright ©
2009 Elsevier, Inc. All rights reserved.

Stored Program Computers

: |
Accounting program |

(machine code)

Editor program
(machine code)

C compiler
Processor (machine code)

Source code in C
for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing at
a given location in memory. Treating instructions in the same way as data greatly simplifies both the memory
hardware and the software of computer systems. Specifically, the memory technology needed for data can
also be used for programs, and programs like compilers, for instance, can translate code written in a notation
far more convenient for humans into code that the computer can understand. Copyright © 2009 Elsevier,
Inc. All rights reserved.

¢ |nstructions represented in
binary, just like data

¢ |nstructions and data stored in
memory

 Programs can operate on
programs (e.g., compilers,
linkers)

¢ Thanks to standardized ISAs,
binary compatibility allows
compiled programs to work on
different computers.

MIPS instructions to date

mmunnnmm address

add 32ien
sub (subtract) R 0] reg reg reg 0 34icn n.a.
add immediate | 8ien reg reg n.a. n.a. n.a. constant

Iw (load word) | 35 | reg reg n.a. n.a. n.a. address

Sw (store word) | A3ien reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not appear in this
format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct
field to decide the variant of the operation: add (32) or subtract (34). Copyright © 2009 Elsevier, Inc. All rights
reserved.

R-format Instructions

op rs rt ra

shamt

funct

6 bits 5 bits 5 bits 5 bits

e Instruction fields
e Op: operation code (opcode)
e rs: first source register number
e rt: second source register number
e rd: register destination number
e shamt: shift amount (00000 for now)

e funct: function code (extends opcode)

5 bits

6 bits

R-format

Op

IS

g

6 bits

add $tO0,

5 bits

$sl,

5 bits

Ss2

special

Ps

Ps2

0

17

18

32

000000

100000

PS |-format Instructions

op rs t constant
6 bits 5 bits 5 bits 16 bits

¢ Includes immediate arithmetic and load/store operations
e Op: operation code (opcode)
e rs: first source register number
e rt: destination register number

e constant: offset added to base address in rs, or immediate operand

MIPS Logical Operations

¢ |Instructions for bitwise manipulation

Shift left ST

Shift right > Sri
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS
implements NOT using a NOR with one operand being zero. Copyright © 2009 Elsevier, Inc. All rights
reserved.

e Useful for inserting and extracting groups of bits in a word

Shift Operations

e Shift left logical (op = s11)
e Shift left and fill with Os
e 511 by / bits multiplies by 2’
e Shift right logical (op = srl)
e Shift right and fill with Os
e srl by / bits divides by ol (for unsigned values only)
e shamt indicates how many positions to shift
e example:

e R-format

AND Operations

e example: and $t0, S$tl1, St2 # $t0 = $tl1 & S$t2

e Useful for masking bits in a word (selecting some bits, clearing others to 0)

0000 0000 0000 00OOO 0000 1101 1100 OOOQO

0000 0000 0000 0000 0011 1100 0000 00OQO

0000 0000 0000 O00OOO 00OOO 1100 0OOOO0 OOOQO

OR Operations

e example: or $t0, tl, St2 # $t0 = $tl1 | $t2

e Useful to include bits in a word (set some bits to 1, leaving others unchanged)

0000 0000 0000 00OOO 0000 1101 1100 OOOQO

0000 0000 0000 0000 0011 1100 0000 00OQO

0000 0000 0000 0000 0011 1101 1100 00O0O

NOT Operations

e Useful to invert bits in a word

e MIPS has 3 operand NOR instruction, used to compute NOT

e example:

nor $t0, S$tl, Szero # $t0 = ~Stl

0000 0000 0000 O00OOO 0000 1101 1100 oOO0OQO

1111 1111 1111 1111 1111 0010 0011 1111

Conditional Operations

e Branch to a labeled instruction if a condition is true

e Otherwise, continue sequentially

e |Instruction labeled with colon e.g. Ll: add $t0, Stl, S$t2

ebeq rs, rt, L1 # 1f (rs == rt) branch to instr labeled L1

e bne rs, rt, L1 # if (rs != rt) branch to instr labeled L1

e j L1 # unconditional jump to instr labeled L1l

Compiling an If Statement

if (i == 3j) bne $s3, $s4, Else
f = g+h add $s0, S$sl, Ss2
else j Exit
f g-h Else:
sub $s0, S$Ssl, S$s2

Exit:

Compiled MIPS

e Where, fis in $s0, g is in $s1, and h is in $s2

e The assembler calculates the addresses corresponding to the labels

Compiling a Loop Statement

while (save[1i] ==
1 +=1

k)

C code

Loop:
sll $tl1, S$s3, 2
add Stl1, Stl, Ss5
lw $t0, 0(S$Stl)
bne $t0, $s4, Exit
addi $s3, S$s3, 1
Jj Loop

Exit:

Compiled MIPS

e \Where, i is in $s3, k is in $s4, address of save in $s5

8Basic Blocks

e A basic block is a sequence of instructions with

e No embedded branches except at the end

* No branch targets except at the beginning

e A compiler identifies basic blocks for optimization

e Advanced processors can accelerate execution of
basic blocks

More Conditional Operations

e Set result to 1 if a condition is true
eslt rd, rs, rt # (rs < rt) ? rd=1 : rd=0
eslti rd, rs, constant # (rs < constant) ? rd=l1

e Use in combination with beq or bne

slt $t0, $sl1, Ss2 # if ($sl1 < $s2)
bne $t0, S$Szero, L # branch to L

Sranch Instruction Design

e \Why not blt, bge, etc.?

e Hardware for <, >= etc. is slower than for = and !=

e Combining with a branch involves more work per instruction, requiring a
slower clock

e All instructions penalized because of this

* As beq and bne are the common case, this is a good compromise

Signed v. Unsigned

e Signed comparison: slt, slti

¢ Unsigned comparison: sltu, sltui

e Example:

$sO: (1111 1111 1111 1111 1111 1111 1111 1111

$ssl: (0000 0000 0000 O00OOO OOOO 0O0OOO 00OOO OOQO1

slt $t0, S$Ss0, Ssl # signed: -1 < 1 thus $t0=1
sltu $t0, $s0, S$sl1 # unsigned: 4,294,967,295 > 1 thus $t0=0

Procedure Calling

e Steps required:

1. Place parameters in registers

2. Transfer control to procedure

3. Aquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

Reqgister Usage

e $a0-$a3: arguments

e $v0, $v1: result values

e $t0-$t9: temporaries, can be overwritten by callee

e $s0-$s7: contents saved (must be restored by callee)
e $gp: global pointer for static data

e $sp: stack pointer

e $fp: frame pointer

e $ra: return address

Memory Layout

¢ Jext: program code

e Static data: global variables

® e.g., static variables in C, constant arrays :

and strings

e $gp initialized to an address allowing +/- Tert

offsets in this segment

¢ Dynamic data: heap

e .g., malloc in C, new in Java

e Stack: automatic storage

$sp— 7FFf fffcpe,

Dynamic data

$gp— 1000 8000, Static data
1000 0000,

pc— 0040 0000,
0

Reserved

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized to
/fff fffc, . and grows down toward the data segment. At the other end, the program code (“text”) starts
at 0040 0000,. The static data starts at 1000 0000,,,,. Dynamic data, allocated by malloc in C and
by new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is
set to an address to make it easy to access data. It is initialized to 1000 8000,,,, so that it can access from
1000 0000y, to 1000 ffff, ., using the positive and negative 16-bit offsets from $gp. This information
is also found in Column 4 of the MIPS Reference Data Card at the front of this book. Copyright © 2009
Elsevier, Inc. All rights reserved.

Local Data on the Stack

¢ | ocal data allocated by the callee

e Procedure frame (activation record) used by some compilers to manage stack

storage
High address

$fp—

$sp—

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

Low address
a. b. C.

FIGURE 2.12 Illlustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for
all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $ fp. This
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. Copyright ©
2009 Elsevier, Inc. All rights reserved.

Cross-call Preservation

Saved registers: $s0-$s7/ Temporary registers: $t0-$t9

Stack pointer register: $sp Argument registers: $a0-%$a3

Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the frame pointer register or on the global pointer register, discussed in the following subsections, they
are also preserved. Copyright © 2009 Elsevier, Inc. All rights reserved.

Procedure Call Instructions

e Procedure call: jump and link
e jal ProcedurelLabel
e Address of following instruction put in $ra
e Jumps to target address
e Procedure return: jump register
® jr Sra
e copies $ra to program counter

e can also be used for computed jumps (e.g., for case/switch statements)

Leaf Procedure Example

int leaf example(int g,h,i,j) {
int f;
f = (g+h) - (i+]);
return f;

C code

e Arguments g, h, i, jin $a0 - $a3

e f will go in $s0 (so will have to save existing contents of $s0 to stack)

e result in $vO

Leaf Procedure Example 2

int leaf example(int g,h,1i,]) {
int f;
f = (g+h) - (i+3J);
return £f;

C code

leaf example:

addi Ssp, Ssp, -4
sw $Ss0, 0(Ssp)

add st0, Sa0, Sal
add $tl, $a2, Sa2 procedure body
sub $s0, S$St0, Stl
add S$v0, $s0, Szero result
lw $s0, 0(S$sp)

addi sp, Ssp, 4
jr Sra return

Compiled MIPS

save $s0 on stack

restore $s0

Non-Leaf Procedures

e A non-leaf procedure is a procedure that calls another procedure

e For a nested call, the caller needs to save to the stack

¢ |ts return address

e Any arguments and temporaries needed after the call

e After the call, the caller must restore these values from the stack

Non-Leaf Procedure Example

int fact(int n) {
1f (n < 1) return 1;
else return (n * fact(n - 1));

C code

Non-Leaf Procedure

int fact(int n) {
if (n < 1) return 1;
else return (n * fact(n -

C code [fact:

addi S$sp,

SW Sra,

SW Sao0,
$to0,

beqg $tO0,
$vo,
$Ssp, $sp, 8
Sra
Sa0, Sa0, -1
fact
Sa0, 0(Ssp)
Sra, 4(Ssp)
$sp, $sp, 8
Sv0, S$a0, S$vO
Sra

Compiled MIPS

adjust stack for 2 items
save return address

save argument

test for n < 1

if so, result is 1
pop 2 items from stack
and return
else decrement n
recursive call
restore original n
and return address
pop 2 items from stack
multiply to get result
and return

H| | o [FHh HFHH K | H H H

Character Data

e Byte-encoded character sets

e ASCII: 128 characters (95 graphic, 33 control)

e | atin-1: 256 characters (ASCII, + 96 more graphic characters)

e Unicode: 32-bit character set

e Used in Java, C++ wide characters

e Most of the world’s alphabets, plus symbols

e UTF-8, UTF-16 are variable-length encodings

Byte/Halfword Operations

e Could use bitwise operations

e MIPS has byte/halfword load/store
lb rt, offset(rs) # sign extend byte to 32 bits in rt
lh rt, offset(rs) # sign extend halfword to 32 bits in rt
lbu rt, offset(rs) zero extend byte to 32 bits in rt
lhu rt, offset(rs) zero extend halfword to 32 bits 1in rt
sb rt, offset(rs) store rightmost byte

sh rt, offset(rs) store rightmost halfword

String Copy Example

volid strcpy (char x[], char y[]) {
int 1;
1 = 0;
while ((x[i]=y[i]) != “\0")
1 += 1;

C code (nhaive)

e Null-terminated string

e Addresses of x and y in $a0 and $a1 respectively

e iin $s0

String Copy

—Xample 2

void strcpy (char x[], char y[]) {

int 1i;
i = 0;

while ((x[i]=y[i])

i +=1;

| = I\OI)

C code (naive)

$sp,
$s0,

$Sp,

-4

0(S$sp)

adjust stack for 1 item
save $s0

$s0,

Szero,

Szero

1 =0

Stl,
St2,

$s0,

Sal

0(5tl)

addr of y[i] in S$tl
$t2 = y[i]

St3,
St2,

$s0,

Sa0

0(5t3)

addr of x[1] in $t3
X[1] = y[1i]

St2,

Szero, L2

exit loop if y[i] ==

$s0,
L1

$s0,

1

i=1+1
next iteration of loop

$s0,
Ssp,

0(S$sp)

$Sp,

4

restore saved $s0
pop 1 item from stack

Sra

Fe| H | I e[Fh|FHh HFHH || H H*

and return

Compiled MIPS

32-bIt constants

e Most constants are small, 16 bits usually sufficient
e For occasional, 32-bit constant:
lui rt, constant
e copies 16-bit constant to the left (upper) bits of rt
e clears right (lower) 16 bits of rt to O

® example usage:

lui $s0, 61 $s0:|0000 0000 O111 1101 0OOOO0 0OOOO 0OOO 0OOOO

ori $s0, S$s0O0, 2304 $s0:(0000 0000 0111 1101 0OOOO 1001 0000 0OQOQO

Sranch Addressing

gisters, branc_:h target

v
constant
16 bits

e Most branch targets are near branch (either forwards or backwards)

e PC-relative addressing

e target address = PC + (offset * 4)

e PC already incremented by four when the target address is calculated

Jump Addressing

e Jump (j and jal) targets could be anywhere in a text segment, so, encode the
full address in the instruction

address
26 bits

* target address = PC[31:28] : (address * 4)

Target Addressing

—Xample

e Loop code from earlier example

e Assume loop at location 80000

sll Stl1,

add $t1l,

lw S$tO0,

bne $tO0,

addi $s3,

Jj Loop
Exit:

Ss3, 2
Stl,
0($tl)
$s4,
Ss3, 1

Ss5

Exit

Addressing Mode Summary

1. Immediate addressing

op|rs | n Immediate

2. Register addressing

op|rs | rt|rd|... Registers

| Register

3. Base addressing

op | rs | Address Memory

Register [[Byte] Halfword
|

4. PC-relative addressing

op|rs | rt Address

5. Pseudodirect addressing

op Address

O—

FIGURE 2.18 Illlustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

Sranching Far Away

e [f a branch target is too far to encode with a 16-bit offset, assembler rewrites
the code

e Example:

beq $s0,S$sl, L1 becomes bne $s0,S$sl, L2
j L1
L2:

Assembler Pseudoinstructions

e Most assembler instructions represent machine instructions, one to one.

e Pseudoinstructions are shorthand. They are recognized by the assembler but
translated into small bundles of machine instructions.

move $t0,S$tl becomes , 5dd $t0,S$zero, Stl

blt $t0,Stl,L becomes , g1t Sat,S$t0,Stl
bne Sat,$zero,L

e Sat (register 1) is an “assembler temporary”

Programming Pitfalls

e Sequential words are not at sequential addresses -- increment by 4 not by 1!

e Keeping a pointer to an automatic variable (on the stack) after procedure
returns

INn conclusion: Fallacies

1. Powerful (complex) instructions lead to higher performance

e Fewer instructions are required

e But complex instructions are hard to implement. As a result implementation may
slow down all instructions including simple ones.

e Compilers are good at making fast code from simple instructions.

2. Use assembly code for high performance

e Modern compilers are better than predecessors at generating good assembly

e More lines of code (in assembly) means more errors and lower productivity

INn conclusion: More Fallacies

3. Backwards compatibility means instruction set doesn’t change

1000
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

OIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

2D AP\ 1D D7 DA WP D S S S S

w
C
9
-
(@)
)
S
-
w
C
[T
o
-
o
O
S
)
Z

Year

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also increases the difficulty for other companies to try to build
compatible processors. Copyright © 2009 Elsevier, Inc. All rights reserved.

