
CSEE 3827: Fundamentals of Computer Systems

Storage

The big picture

2

General purpose
processor

(e.g., Power PC,
Pentium, MIPS)

C
L

D Q

Memory

addr

data_in

data_out

r_en

w_en

Internet router
(intrusion detection,
packet routing, etc.)

WIreless transceiver
(e.g., wifi, iPhone)

logic gates, boolean algebra flip-flops, latches

combinational logic
sequential logic,

finite state machines
storage elements

(next)

Registers

3

A flip-flop can store 1 bit. A register is a set of n flip flops that stores n bits.

Register w. load control input (v1)

4

Encapsulate logic inside register

Send clock signal to flip-flops only
when Load=1

This technique is called clock
gating

Register w. load control input (v2)

5

Encapsulate logic inside flip-flop

EN signal selects between current
value of register (Q) or new value (D)

Preferable to v1 as it leaves clock
signal unadultered.

Shift register

6

A register capable of shifting bits laterally in one or both directions

Shift register w. parallel load

7

Three modes:
Serial input

Parallel input
No input

Shift register w. parallel load

8

Serial input operation
(enabled by Shift)

Shift register w. parallel load

9

Parallel load operation
(enabled by Load AND Shift)

Shift register w. parallel load

10

Do nothing operation
(enabled by Load AND Shift)

Ripple Counter

• Each flip-flop feeds Q into D: complements
its value

• X’s Q feeds into Y’s clock, Y’s Q feeds into
Z’s clock - why?

11

D

D

D

C0

C1

C2

X

Y

Z

Ripple Counter

• Note: each FF is negative-edge triggered

12

D

D

D

C0

C1

C2

X

Y

Z

Y’s clock

Ripple Counter

13

D

D

D

C0

C1

C2

X

Y

Z C2 0 0 0 0 1 1 1 1 0 0
C1 0 0 1 1 0 0 1 1 0 0
C0 0 1 0 1 0 1 0 1 0 1

Ripple Counter with Positive Edge Triggering

14

D

D

D

C0

C1

C2

X

Y

Z C2 0 1 1 1 1 0 0 0 0 1 1
C1 0 1 1 0 0 1 1 0 0 1 1
C0 0 1 0 1 0 1 0 1 0 1 0

Serial Counter (counting upward)

15

D

D

D

C0

C1

C2

X

Y

Z

• Y(t+1) differs from Y(t) only when X(t)=1

• Z(t+1) differs from Z(t) when both X(t)=1 and
Y(t)=1

• so Y changes when X (evaluates to TRUE),
Z changes when XY (evaluates to TRUE)

• X = X, Y = Y⊕X, Z = Z⊕XY

• for the jth bit (in a j+1 bit counter), Bj = Bj ⊕
Bj-1Bj-2...B1B0

C2 0 0 0 0 1 1 1 1 0 0
C1 0 0 1 1 0 0 1 1 0 0
C0 0 1 0 1 0 1 0 1 0 1

Register MUXing

• Suppose have
• 4 k-bit registers with Enable (for writing)
• combinational logic to perform some

operation OP
• Goal: Allow system to select registers

• 2 registers selected for inputs (A & B)
• 1 register for output (C)
• At end of cycle: C = A OP B

• Note: A&B can be same register, C can also
be same as A or B

16

Some 2-input,
1-output

combinational
circuit

 (e.g., +, -)

In1

In2

Out

k

k

k

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

Register MUXing example

• e.g.,

• Reg01 = Reg01 OP Reg10

• Reg10 = Reg10 OP Reg10 (if OP were +, this would do Reg10 *= 2)

• OP selecting: be able to choose from different OPs, e.g.

• Reg01 = Reg01 + Reg10

• Reg10 = Reg01 * Reg00

17

Register MUXing

18

Some 2-input,
1-output

combinational
circuit

 (e.g., +, -)

In1

In2

Out

k

k

k

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

4-to-1
MUX

4-to-1
MUX

2-to-4
DEC

C A B2

2

2

SEL

SEL

SEL

Register MUXing

19

Some 2-input,
1-output

combinational
circuit

 (e.g., +, -)

In1

In2

Out

k

k

k

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

4-to-1
MUX

4-to-1
MUX

2-to-4
DEC

C A B2

2

2

SEL

SEL

SEL

Decoder selects which register is
enabled (will be written to)

Register MUXing

20

Some 2-input,
1-output

combinational
circuit

 (e.g., +, -)

In1

In2

Out

k

k

k

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

4-to-1
MUX

4-to-1
MUX

2-to-4
DEC

C A B2

2

2

SEL

SEL

SEL

Top MUX selects using A,
determines which register

feeds into In1.

Bottom MUX does same
using B for In2.

Example: Reg01 = Reg10 OP Reg01

21

Some 2-input,
1-output

combinational
circuit

 (e.g., +, -)

In1

In2

Out

k

k

k

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

4-to-1
MUX

4-to-1
MUX

2-to-4
DEC

01 10 012

2

2

SEL

SEL

SEL

Register MUXing and OP MUXing

22

Reg 00
In Out

En

k k

Reg 01
In Out

En

k k

Reg 10
In Out

En

k k

Reg 11
In Out

En

k k

4-to-1
MUX

4-to-1
MUX

2-to-4
DEC

C A B2

2

2

SEL

SEL

SEL

4-to-1
MUX

Op1

Op2

Op3

Op4k

k

k

Opsel

2

Serial Adder Circuit

• New Value pushed into A register

• Result pushed into B register

• If Shift Reg holds N bits, SUM starts calculating during N+1st cycle

• Done after 2N cycles

Shift Reg

C
Clear

SI

SO

Shift Reg

C
Clear

SI

SO
Full

Adder

X

Y

Z

S

C

CarryD

R
C

Serial Input

RESET

CLOCK

A

B

Serial Adder Circuit Example: 0101 + 0011 = 1100

Shift Reg

C

Clear

SI

SO

Shift Reg

C

Clear

SI

SO

Full
Adder

X

Y

Z

S

C

CarryD

R
C

Serial Input

RESET

CLOCK

A

B
Time In A B S C

0 1 “0000” “0000” 0 0

1 0 “1000” “0000” 0 0

2 1 “0100” “0000” 0 0

3 0 “1010” “0000” 0 0

4 0 “0101” “0000” 1 0

5 0 “1010” “1000” 0 0

6 1 “1101” “0100” 1 0

7 1 “0110” “1010” 0 0

8 X “0011” “0101” 0 1

9 X “X011” “0010” 0 1

10 X “XX01” “0001” 1 1

11 X “XXX0” “1000” 1 0

12 X “XXXX” “1100” 0 0

To time 7, just rolling values into registers by
adding with 0’s (B output)

Adding starts time 8 with least significant bits

Address

Read

Enable

DataIn

DataOut

k

n

n

2 words
n bits per word

k

MEMORY

Memory interface

• Stores data in word units

• A word is several bytes (16-, 32-, or 64-bit words are typical)

• write operations store data to memory

• read operations retrieve data from memory

25

An n-bit value can be read from or
written to each k-bit address

Conceptual view of memory

26

Memory array architecture (1)

27

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Memory is a 2D array of bits. Each bit stored in a cell.

cell

Copyright © 2007 Elsevier

Memory array architecture (2)

28

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Address is decoded into set of wordlines.
Wordlines select row to be read/written.
Only one wordline=1 at a time.

Copyright © 2007 Elsevier

Memory array architecture (3)

29

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

When writing, contents of word written to bitlines.

Copyright © 2007 Elsevier

Memory cell abstraction

30

stored
bit

wordline
bitline

Copyright © 2007 Elsevier

wordline stored bit bitline

0 x Z

1 0 0

1 1 1

Cell is base element of memory that stores a single bit

Implementation of cell varies with type of memory.

Implemented with a tristate
buffer. Value “Z” does not drive
output wire to either a 0 or 1.

Types of memory

Volatile (no storage when power off)

Fast reads and writes

Historically called RAM because equal
time to read/write all addresses (in
contrast to serial-access devices such as
a hard disk or tape). Somewhat
misleading as ROM also can have uniform
access time.

31

Non-volatile (retains data when powered off)

Fast reads, writing is impossible or slow
(again, misleading name)

Historically called ROMs because written by
permanently blowing fuses (so rewriting was
impossible). Modern ROMs, such as flash
memory in iPod are rewritable, just slowly.

Random access memory (RAM) Read-only memory (ROM)

Dynamic RAM (DRAM) Static RAM (SRAM)
Cell stores data w.
capacitors

Cell stores data w.
cross-coupled inverters

wordline

bitline

stored
bit

wordline
bitline bitline

ROM
Mask-programmed
(at chip fab)

PROM
Fuse- or antifuse-
programmed

FLASH

Electrically
erasable floating
gate with
multiple erasure
and
programming
modes

Copyright © 2007 Elsevier

Hard Disk

Flip-flop Register

Volatile storage (RAM) comparisons

32

Flip-flop SRAM DRAM

Transistors / bit ~20 6 1

Density Low Medium High

Access time Fast Medium Slow

Destructive read? No No Yes
(refresh required)

Power consumption High Medium Low

Storage hierarchy

33

Main
memory

(DRAM)

Non-volatile
storage

(Hard disk
 or

solid-state drive)

CPU Cache

(SRAM)
Registers

Fast access to small
amount of data

Slow access to large
amount of data

Bottom-up examination of SRAM circuits

34

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Copyright © 2007 Elsevier

Bottom-up examination of SRAM circuits (2)

35

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Copyright © 2007 Elsevier

Bits stored in cells
(modeled by an SR latch)

Bottom-up examination of SRAM circuits (3)

36

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Cells wired into bitslices.

Copyright © 2007 Elsevier

Bottom-up examination of SRAM circuits (4)

37

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Block diagram of a bitslice

Copyright © 2007 Elsevier

Bottom-up examination of SRAM circuits (5)

38

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Address decoded to
select one row of bitslice

for read/write

Copyright © 2007 Elsevier

Bottom-up examination of SRAM circuits (6)

39

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

To increase word size,
add bitslices.

Copyright © 2007 Elsevier

Coincident cell selection

40

• Decode address into both row
and column select signals

• How many words in this RAM?

• How many bits per word?

Coincident cell selection w. larger words

41

• How many words in this RAM?

• How many bits per word?

Coincident cell selection saves decode logic

42

32
K

 w
or

ds

1 byte

STORAGE
COLUMN

15
-b

it
ad

dr
es

s

(32,800 gates)

DECODER

51
2

w
or

ds

1 byte
9-

bi
ts

 o
f a

dd
re

ss

DECODER
#1

STORAGE COLUMNS

...

...64 column selects...

…
 3

2,
76

8
ro

w
 s

el
ec

ts
 ..

.

…
 5

12
 ro

w
 s

el
ec

ts
 ..

.

DECODER #2

6-bits of address(608 gates)

Multi-chip memories

• If you need a larger memory
than any available chip

• Wire multiple RAM chips
together to work in concert as
one large memory

43

Memory Timing: Write example
• Even though memory not “on the clock”, timing still an issue:

• inputs are “on the clock”

• must first be properly enabled for reading or writing before data is
transferred

• Appropriate address chosen

• Appropriate segment enabled

• Appropriate read/write configuration set

• Data valid: period during which writing must be performed

44

Address
Mem enable
Read/Write
Data Valid

Time

Read/Write
Write example

Memory Timing: Read example
• Even though memory not “on the clock”, timing still an issue:

• inputs are “on the clock”

• must first be properly enabled for reading or writing before data is
transferred

• Appropriate address chosen

• Appropriate segment enabled

• Appropriate read/write configuration set

• Data valid: period during which writing must be performed

45

Address
Mem enable
Read/Write
Data Valid

Time

Read/Write
Read example

CPU to Mem communication delay

Programmable Logic Devices

• Programmable logic devices (PLDs)

• Structured like memories

• Used to implement combinational logic

• “X” on array logic means wire connected to logic gate (e.g. above)

• Connections can be either permanent (e.g., fuse, mask) or not (e.g., Flash)

46

x

...

General PLD architecture

47

Fixed AND, programmable OR = Programmable ROM (PROM)
Programmable AND, fixed OR = Programmable Array Logic (PAL)

Programmable AND, programmable OR = Programmable Logic Array (PLA)

Programmable ROM (PROM)

48

Fixed (X) AND, programmable (X) OR

x x x x
x x x x

x x x x
x x x x

A B C D

m0

...

m1

m14

m15

x
x

x

x

x

x x

E F G H

Programmable Array Logic (PAL)

49

Programmable (X) AND, fixed (X) OR

A B C D

...

x

x
x

x
xx x

x x

x x

x
x

x
x

x x x

E F

Programmable Logic Array (PLA)

50

Programmable (X) AND, programmable (X) OR

A B C D

...

x

x
x

x
x

x
x
x x

x x
x x x

x

x

x

x

E F G H

