
CSEE 3827: Fundamentals of Computer Systems

Boolean Algebra

M&K 2.3-2.5

Agenda

• Standard Forms

• Product-of-Sums (PoS)

• Sum-of-Products (SoP)

• conversion between

• Min-terms and Max-terms

• Simplification via Karnaugh Maps (K-maps)

• 2, 3, and 4 variable

• Implicants, Prime Implicants, Essential Prime Implicants

• Using K-maps to reduce

• PoS form

• Don’t Care Conditions
2

Standard Forms

• There are many ways to express a boolean expression

• It is useful to have a standard or canonical way

• Derived from truth table

• Generally not the simplest form

F = XYZ + XYZ + XZ
= XY(Z + Z) + XZ
= XY + XZ

Two principle standard forms

• Sum-of-products (SOP)

• Product-of-sums (POS)

Product and sum terms

5

• Product term: logical AND of literals (e.g., XYZ)

• Sum term: logical OR of literals (e.g., A + B + C)

PoS & SoP

• Sum of products (SoP): OR of ANDs

• Product of sums (PoS): AND of ORs

6

e.g., F = Y + XYZ + XY

e.g., G = X(Y + Z)(X + Y + Z)

Converting from PoS (or any form) to SoP

Just multiply through and simplify, e.g.,

7

G = X(Y + Z)(X + Y + Z)

= XYX + XYY + XYZ + XZX + XZY + XZZ

= XY + XY + XYZ + XZ + XZY + XZ

= XY + XZ

Converting from SoP to PoS

Complement, multiply through, complement via DeMorgan, e.g.,

8

F = Y’Z’ + XY’Z + XYZ’

F' = (Y+Z)(X’+Y+Z’)(X’+Y’+Z)

= YZ + X’Y + X’Z (after lots of simplification)

F = (Y’+Z’)(X+Y’)(X+Z’)

Note: X’ = X

Minterms

• A product term in which all variables
appear once, either complemented or
uncomplemented (i.e., an entry in the
truth table).

• Each minterm evaluates to 1 for
exactly one variable assignment, 0 for
all others.

• Denoted by mX where X corresponds
to the variable assignment for which
mX = 1.

9

A B C minterm

0 0 0 m0 ABC

0 0 1 m1 ABC

0 1 0 m2 ABC

0 1 1 m3 ABC

1 0 0 m4 ABC

1 0 1 m5 ABC

1 1 0 m6 ABC

1 1 1 m7 ABC

e.g., Minterms for 3 variables A,B,C

Minterms to describe a function

sometimes also called a minterm expansion or disjunctive normal form (DNF)

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = ABC + ABC + ABC + ABC + ABC

F = ABC + ABC + ABC

This “term” is TRUE when
A=0,B=1,C=0

The logical OR of all minterms for which F = 1.

Minterm example, seen another way

11

A B C minterm F m0 m1 m2 m3 m4 m5 m6 m7

0 0 0 m0 ABC 1 1 0 0 0 0 0 0 0

0 0 1 m1 ABC 1 0 1 0 0 0 0 0 0

0 1 0 m2 ABC 1 0 0 1 0 0 0 0 0

0 1 1 m3 ABC 0 0 0 0 1 0 0 0 0

1 0 0 m4 ABC 1 0 0 0 0 1 0 0 0

1 0 1 m5 ABC 1 0 0 0 0 0 1 0 0

1 1 0 m6 ABC 0 0 0 0 0 0 0 1 0

1 1 1 m7 ABC 0 0 0 0 0 0 0 0 1

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

+

+

+

+

+

+

+

Minterm example, conclusion

A B C F F minterm

0 0 0 1 0 m0 ABC

0 0 1 1 0 m1 ABC

0 1 0 1 0 m2 ABC

0 1 1 0 1 m3 ABC

1 0 0 1 0 m4 ABC

1 0 1 1 0 m5 ABC

1 1 0 0 1 m6 ABC

1 1 1 0 1 m7 ABC

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

F = ABC + ABC + ABC

= m3 + m6 + m7

= ∑m(3,6,7)

(variables appear once in each minterm)

Minterms as a circuit

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

A B C

F

Standard form is
not minimal form!

Maxterms

14

A B C maxterm

0 0 0 M0 A+B+C

0 0 1 M1 A+B+C

0 1 0 M2 A+B+C

0 1 1 M3 A+B+C

1 0 0 M4 A+B+C

1 0 1 M5 A+B+C

1 1 0 M6 A+B+C

1 1 1 M7 A+B+C

• A sum term in which all variables
appear once, either complemented or
uncomplemented.

• Each maxterm evaluates to 0 for
exactly one variable assignment, 1 for
all others.

• Denoted by MX where X corresponds
to the variable assignment for which
MX = 0.

Maxterm description of a function

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = (A+B+C) (A+B+C) (A+B+C)

Force to 0

This “term” is FALSE when
A=1,B=1,C=0

sometimes also called a maxterm expansion or conjunctive normal form (CNF)

The logical AND of all maxterms for which F = 0.

Maxterm example, seen another way

16

A B C maxterm F M0 M1 M2 M3 M4 M5 M6 M7

0 0 0 M0 A+B+C 1 0 1 1 1 1 1 1 1

0 0 1 M1 A+B+C 1 1 0 1 1 1 1 1 1

0 1 0 M2 A+B+C 1 1 1 0 1 1 1 1 1

0 1 1 M3 A+B+C 0 1 1 1 0 1 1 1 1

1 0 0 M4 A+B+C 1 1 1 1 1 0 1 1 1

1 0 1 M5 A+B+C 1 1 1 1 1 1 0 1 1

1 1 0 M6 A+B+C 0 1 1 1 1 1 1 0 1

1 1 1 M7 A+B+C 0 1 1 1 1 1 1 1 0

The logical AND of all maxterms for which F = 0.

F = (A+B+C) (A+B+C) (A+B+C)

= (M0) (M4) (M5) (M6) (M7)

= ∏M(0,4,5,6,7)

Maxterm example, conclusion

17

A B C maxterm F

0 0 0 M0 A+B+C 1

0 0 1 M1 A+B+C 1

0 1 0 M2 A+B+C 1

0 1 1 M3 A+B+C 0

1 0 0 M4 A+B+C 1

1 0 1 M5 A+B+C 1

1 1 0 M6 A+B+C 0

1 1 1 M7 A+B+C 0

One final example

A B C F F

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

F F
Minterms

(SOP)

Maxterms
(POS)

Summary of Minterms and Maxterms

F F

Minterms
(SOP)

∑m(F = 1) ∑m(F = 0)

Maxterms
(POS)

∏M(F = 0) ∏M(F = 1)

Relations between standard forms

20

all boolean expressions

sum of products

sum of minterms

product of sums

product of maxterms

F F
DeMorgan’s

Simplification with Karnaugh Maps

Cost criteria

• Literal cost: the number of literals in an expression

• Gate-input cost: the literal cost + all terms with more than one literal +
(optionally) the number of distinct, complemented single literals

22

Literal cost Gate-input cost

G = ABCD + ABCD 8 8 + 2 + (4)

G = (A+B)(B+C)(C+D)(D+A) 8 8 + 5 + (4)

Roughly proportional to the number of transistors and wires
in an AND/OR/NOT circuits. Does not apply, to more

complex gates, for example XOR.

Karnaugh maps (a.k.a., K-maps)

• All functions can be expressed with a map

• There is one square in the map for each minterm in a function’s truth table

23

X Y F

0 0 m0

0 1 m1

1 0 m2

1 1 m3

0 1

0
m0
XY

m1
XY

1
m2
XY

m3
XY

Y
X

Karnaugh maps express functions

• Fill out table with value of a function

24

X Y F

0 0 0

0 1 1

1 0 1

1 1 1

0 1

0

1

Y
X

Simplification using a k-map

• Whenever two squares share an edge and both are 1, those two terms can be
combined to form a single term with one less variable

25

0 1

0 0 1

1 1 1

Y
X

F = XY + XY + XY

0 1

0 0 1

1 1 1

Y
X

F = Y + XY

0 1

0 0 1

1 1 1

Y
X

F = X + XY

0 1

0 0 1

1 1 1

Y
X

F = X + Y

Simplification using a k-map (2)

• Circle contiguous groups of 1s (circle sizes must be a power of 2)

• There is a correspondence between circles on a k-map and terms in a
function expression

• The bigger the circle, the simpler the term

• Add circles (and terms) until all 1s on the k-map are circled

26

0 1

0 0 1

1 1 1

Y
X

F = X + Y

3-variable Karnaugh maps

• Use gray ordering on edges with multiple variables

• Gray encoding: order of values such that only one bit changes at a time

• Two minterms are considered adjacent if they differ in only one variable (this
means maps “wrap”)

27

Y=1
0 0 0 1 1 1 1 0

0
m0
XYZ

m1
XYZ

m3
XYZ

m2
XYZ

X=1 1
m4
XYZ

m5
XYZ

m7
XYZ

m6
XYZ

Z=1

Y Z

X

4-variable Karnaugh maps

28

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

Extension of 3-variable maps

Implicants

29

Implicant: a product term, which, viewed in a K-Map is a 2i x 2j size
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

Note: bigger rectangles = fewer literals

4-variable Karnaugh map example

30

Y
0 0 0 1 1 1 1 0

0 0

0 1
X

W
1 1

1 0

Z

Y Z
WX

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

Implicant terminology

• implicant: a product term, which, viewed in a K-Map is a 2i x 2j size
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

• prime implicant: An implicant not contained within another implicant.

• essential prime implicant: a prime implicant that is the only prime
implicant to cover some minterm.

31

• List all of the prime implicants for this function

• Is any of them an essential prime implicant?

• What is a simplified expression for this function?

4-variable Karnaugh maps (3)

32

Y
0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 1 1 1 0
X

W
1 1 0 1 1 1

1 0 0 1 0 0

Z

Y Z
WX

Using K-maps to build simplified circuits	

• Step 1: Identify all PIs and essential PIs

• Step 2: Include all Essential PIs in the circuit (Why?)

• Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are
“big” and do a good job covering

33

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 1 1 0

0 1 1 0

1 1 1 1

1 1 0 1

Design example : 2-bit multiplier

34

a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

two 2-bit #’s multiplied together to give a 4-bit solution

e.g., a1a0 = 10, b1b0 = 11, z3z2z1z0 = 0110

K-Maps: Complements, PoS, don’t care conditions

Finding F

Find prime implicants corresponding to the 0s on a k-map

36

0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 1 1 0 1

Y Z
WX 0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 1 0

1 1 0 0 1 1

1 0 0 0 1 0

Y Z
WX

F = Y + XZ + WZ F = YZ + WXY

PoS expressions from a k-map

Find F as SoP and then apply DeMorgan’s

37

0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 0 0 0

1 1 1 0 0 0

1 0 1 1 0 1

Y Z
WX

F = YZ + XZ + YX

DeMorgan’s

F = (Y+Z)(Z+X)(Y+X)

Don’t care conditions

There are circumstances in which the value of an output doesn’t matter

38

a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0 X X X X

0 0 0 1 X X X X

0 0 1 0 X X X X

0 0 1 1 X X X X

0 1 0 0 X X X X

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 X X X X

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 X X X X

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

• For example, in that 2-bit multiplier, what if we are told
that a and b will be non-0? We “don’t care” what the
output looks like for the input cases that should not
occur

• Don’t care situations are denoted by an “X” in a truth
table and in Karnaugh maps.

• Can also be expressed in minterm form:

• During minimization can be treated as either a 1 or a 0

z2 = ∑m(10,11,14)
d2 = ∑m(0,1,2,3,4,8,12)

 2-bit multiplier non-0 multiplier

39

a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0 X X X X

0 0 0 1 X X X X

0 0 1 0 X X X X

0 0 1 1 X X X X

0 1 0 0 X X X X

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 X X X X

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 X X X X

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

z3 = z2 =

X X X X

X 0 0 0

X 0 1 0

X 0 0 0
a1

a0

X X X X

X 0 0 0

X 0 0 1

X 0 1 1

b1

b0 b0

b1

1’s must be covered
0’s must not be covered
X’s are optionally covered

a1

a0

 2-bit multiplier non-0 multiplier (2)

40

X X X X

X 1 1 0

X 1 1 0

X 0 0 0

a0
a1

X X X X

X 0 1 1

X 1 0 1

X 1 1 0

a0
a1

b0 b0

b1 b1

z1 =

a1 a0 b1 b0 z3 z2 z1 z0
0 0 0 0 X X X X
0 0 0 1 X X X X
0 0 1 0 X X X X
0 0 1 1 X X X X
0 1 0 0 X X X X
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 X X X X
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 X X X X
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

z0 =

Final thoughts on Don’t care conditions

Sometimes “don’t cares” greatly simplify circuitry

41

1 X X X

X 1 X X

0 0 1 X

0 0 X 1
A

D

C

B

ABCD + ABCD + ABCD + ABCD vs. A + C

Glitches and Hazards

• Glitch: an unintended change in circuit output

• Hazard: the hardware structures that cause a glitch to occur

• Caused by multiple path delays through a circuit

• Example: AB + BC

• Avoidance

• Synchronous design (coming later)

• Extra implicants

Glitches and hazards

43

