
CSEE 3827: Fundamentals of Computer Systems

Boolean Algebra

M&K 2.3-2.5



Agenda

• Standard Forms

• Product-of-Sums (PoS)

• Sum-of-Products (SoP)

• conversion between

• Min-terms and Max-terms

• Simplification via Karnaugh Maps (K-maps)

• 2, 3, and 4 variable

• Implicants, Prime Implicants, Essential Prime Implicants

• Using K-maps to reduce

• PoS form

• Don’t Care Conditions
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Standard Forms

• There are many ways to express a boolean expression

• It is useful to have a standard or canonical way

• Derived from truth table

• Generally not the simplest form

F = XYZ + XYZ + XZ
= XY(Z + Z) + XZ
= XY + XZ



Two principle standard forms

• Sum-of-products (SOP)

• Product-of-sums (POS)



Product and sum terms
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• Product term:  logical AND of literals (e.g., XYZ)

• Sum term: logical OR of literals (e.g., A + B + C)



PoS & SoP

• Sum of products (SoP): OR of ANDs

• Product of sums (PoS): AND of ORs
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e.g., F = Y + XYZ + XY

e.g., G = X(Y + Z)(X + Y + Z)



Converting from PoS (or any form) to SoP

Just multiply through and simplify, e.g., 
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G = X(Y + Z)(X + Y + Z)

= XYX + XYY + XYZ + XZX + XZY + XZZ

= XY + XY + XYZ + XZ + XZY + XZ

= XY + XZ



Converting from SoP to PoS

Complement, multiply through, complement via DeMorgan, e.g., 

8

F = Y’Z’ + XY’Z + XYZ’

F' = (Y+Z)(X’+Y+Z’)(X’+Y’+Z)

= YZ + X’Y + X’Z     (after lots of simplification)

F = (Y’+Z’)(X+Y’)(X+Z’)

Note: X’ = X



Minterms

• A product term in which all variables 
appear once, either complemented or 
uncomplemented (i.e., an entry in the 
truth table).

• Each minterm evaluates to 1 for 
exactly one variable assignment, 0 for 
all others.

• Denoted by mX where X corresponds 
to the variable assignment for which 
mX = 1.
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A B C minterm

0 0 0 m0   ABC

0 0 1 m1   ABC

0 1 0 m2   ABC

0 1 1 m3   ABC

1 0 0 m4   ABC

1 0 1 m5   ABC

1 1 0 m6   ABC

1 1 1 m7  ABC

e.g., Minterms for 3 variables A,B,C



Minterms to describe a function

sometimes also called a minterm expansion or disjunctive normal form (DNF)

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = ABC + ABC + ABC + ABC + ABC

F = ABC + ABC + ABC

This “term” is TRUE when 
A=0,B=1,C=0



The logical OR of all minterms for which F = 1.

Minterm example, seen another way
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A B C minterm F m0 m1 m2 m3 m4 m5 m6 m7

0 0 0 m0   ABC 1 1 0 0 0 0 0 0 0

0 0 1 m1   ABC 1 0 1 0 0 0 0 0 0

0 1 0 m2   ABC 1 0 0 1 0 0 0 0 0

0 1 1 m3   ABC 0 0 0 0 1 0 0 0 0

1 0 0 m4   ABC 1 0 0 0 0 1 0 0 0

1 0 1 m5   ABC 1 0 0 0 0 0 1 0 0

1 1 0 m6   ABC 0 0 0 0 0 0 0 1 0

1 1 1 m7  ABC 0 0 0 0 0 0 0 0 1

+    +

+    +

+    +

+    +

+    +

+    +

+    +

+    +

+   

+   

+   

+   

+   

+   

+   
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Minterm example, conclusion

A B C F F minterm

0 0 0 1 0 m0   ABC

0 0 1 1 0 m1   ABC

0 1 0 1 0 m2   ABC

0 1 1 0 1 m3   ABC

1 0 0 1 0 m4   ABC

1 0 1 1 0 m5   ABC

1 1 0 0 1 m6   ABC

1 1 1 0 1 m7  ABC

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

F = ABC + ABC + ABC

= m3 + m6 + m7

= ∑m(3,6,7)

(variables appear once in each minterm)



Minterms as a circuit

F = ABC + ABC + ABC + ABC + ABC

= m0 + m1 + m2 + m4 + m5

= ∑m(0,1,2,4,5)

A B C

F

Standard form is 
not minimal form!



Maxterms
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A B C maxterm

0 0 0 M0   A+B+C

0 0 1 M1   A+B+C

0 1 0 M2   A+B+C

0 1 1 M3   A+B+C

1 0 0 M4   A+B+C

1 0 1 M5   A+B+C

1 1 0 M6   A+B+C

1 1 1 M7  A+B+C

• A sum term in which all variables 
appear once, either complemented or 
uncomplemented.

• Each maxterm evaluates to 0 for 
exactly one variable assignment, 1 for 
all others.

• Denoted by MX where X corresponds 
to the variable assignment for which 
MX = 0.



Maxterm description of a function

A B C F F

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

F = (A+B+C) (A+B+C) (A+B+C)

Force to 0

This “term” is FALSE when 
A=1,B=1,C=0

sometimes also called a maxterm expansion or conjunctive normal form (CNF)



The logical AND of all maxterms for which F = 0.

Maxterm example, seen another way
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A B C maxterm F M0 M1 M2 M3 M4 M5 M6 M7

0 0 0 M0   A+B+C 1 0 1 1 1 1 1 1 1

0 0 1 M1   A+B+C 1 1 0 1 1 1 1 1 1

0 1 0 M2   A+B+C 1 1 1 0 1 1 1 1 1

0 1 1 M3   A+B+C 0 1 1 1 0 1 1 1 1

1 0 0 M4   A+B+C 1 1 1 1 1 0 1 1 1

1 0 1 M5   A+B+C 1 1 1 1 1 1 0 1 1

1 1 0 M6   A+B+C 0 1 1 1 1 1 1 0 1

1 1 1 M7  A+B+C 0 1 1 1 1 1 1 1 0



The logical AND of all maxterms for which F = 0.

F = (A+B+C) (A+B+C) (A+B+C) 

= (M0) (M4) (M5) (M6) (M7)

= ∏M(0,4,5,6,7)

Maxterm example, conclusion
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A B C maxterm F

0 0 0 M0   A+B+C 1

0 0 1 M1   A+B+C 1

0 1 0 M2   A+B+C 1

0 1 1 M3   A+B+C 0

1 0 0 M4   A+B+C 1

1 0 1 M5   A+B+C 1

1 1 0 M6   A+B+C 0

1 1 1 M7  A+B+C 0



One final example

A B C F F

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

F F
Minterms

(SOP)

Maxterms
(POS)



Summary of Minterms and Maxterms

F F

Minterms
(SOP)

∑m(F = 1) ∑m(F = 0)

Maxterms
(POS)

∏M(F = 0) ∏M(F = 1)



Relations between standard forms
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all boolean expressions

sum of products

sum of minterms

product of sums

product of maxterms

F F
DeMorgan’s



Simplification with Karnaugh Maps



Cost criteria

• Literal cost: the number of literals in an expression

• Gate-input cost: the literal cost + all terms with more than one literal + 
(optionally) the number of distinct, complemented single literals
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Literal cost Gate-input cost

G = ABCD + ABCD 8 8 + 2 + (4)

G = (A+B)(B+C)(C+D)(D+A) 8 8 + 5 + (4)

Roughly proportional to the number of transistors and wires 
in an AND/OR/NOT circuits.  Does not apply, to more 

complex gates, for example XOR.



Karnaugh maps (a.k.a., K-maps)

• All functions can be expressed with a map

• There is one square in the map for each minterm in a function’s truth table
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X Y F

0 0 m0

0 1 m1

1 0 m2

1 1 m3

0 1

0
m0
XY

m1
XY

1
m2
XY

m3
XY

Y
X



Karnaugh maps express functions

• Fill out table with value of a function 
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X Y F

0 0 0

0 1 1

1 0 1

1 1 1

0 1

0

1

Y
X



Simplification using a k-map

• Whenever two squares share an edge and both are 1, those two terms can be 
combined to form a single term with one less variable
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0 1

0 0 1

1 1 1

Y
X

F = XY + XY + XY

0 1

0 0 1

1 1 1

Y
X

F = Y + XY 

0 1

0 0 1

1 1 1

Y
X

F = X + XY 

0 1

0 0 1

1 1 1

Y
X

F = X + Y



Simplification using a k-map (2)

• Circle contiguous groups of 1s (circle sizes must be a power of 2)

• There is a correspondence between circles on a k-map and terms in a 
function expression

• The bigger the circle, the simpler the term

• Add circles (and terms) until all 1s on the k-map are circled
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0 1

0 0 1

1 1 1

Y
X

F = X + Y



3-variable Karnaugh maps

• Use gray ordering on edges with multiple variables

• Gray encoding: order of values such that only one bit changes at a time

• Two minterms are considered adjacent if they differ in only one variable (this 
means maps “wrap”)
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Y=1
0 0 0 1 1 1 1 0

0
m0
XYZ

m1
XYZ

m3
XYZ

m2
XYZ

X=1 1
m4
XYZ

m5
XYZ

m7
XYZ

m6
XYZ

Z=1

Y Z

X



4-variable Karnaugh maps
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Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

Extension of 3-variable maps



Implicants
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Implicant: a product term, which, viewed in a K-Map is a 2i x 2j size 
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

Y
0 0 0 1 1 1 1 0

0 0 m0 m1 m3 m2

0 1 m4 m5 m7 m6
X

W
1 1 m12 m13 m15 m14

1 0 m8 m9 m11 m10

Z

Y Z
WX

Note: bigger rectangles = fewer literals



4-variable Karnaugh map example
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Y
0 0 0 1 1 1 1 0

0 0

0 1
X

W
1 1

1 0

Z

Y Z
WX

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0



Implicant terminology

• implicant: a product term, which, viewed in a K-Map is a 2i x 2j size 
“rectangle” (possibly wrapping around) where i=0,1,2, j=0,1,2

• prime implicant: An implicant not contained within another implicant.

• essential prime implicant: a prime implicant that is the only prime 
implicant to cover some minterm.
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• List all of the prime implicants for this function

• Is any of them an essential prime implicant?

• What is a simplified expression for this function?

4-variable Karnaugh maps (3)
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Y
0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 1 1 1 0
X

W
1 1 0 1 1 1

1 0 0 1 0 0

Z

Y Z
WX



Using K-maps to build simplified circuits	

• Step 1: Identify all PIs and essential PIs

• Step 2: Include all Essential PIs in the circuit (Why?)

• Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are 
“big” and do a good job covering
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1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 1 1 0

0 1 1 0

1 1 1 1

1 1 0 1



Design example : 2-bit multiplier
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a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

two 2-bit #’s multiplied together to give a 4-bit solution

e.g., a1a0 = 10, b1b0 = 11, z3z2z1z0 = 0110



K-Maps: Complements, PoS, don’t care conditions



Finding F

Find prime implicants corresponding to the 0s on a k-map
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0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 1 0 1

1 1 1 1 0 0

1 0 1 1 0 1

Y Z
WX 0 0 0 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 1 0

1 1 0 0 1 1

1 0 0 0 1 0

Y Z
WX

F = Y + XZ + WZ F = YZ + WXY



PoS expressions from a k-map

Find F as SoP and then apply DeMorgan’s
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0 0 0 1 1 1 1 0

0 0 1 1 0 1

0 1 1 0 0 0

1 1 1 0 0 0

1 0 1 1 0 1

Y Z
WX

F = YZ + XZ + YX

DeMorgan’s

F = (Y+Z)(Z+X)(Y+X)



Don’t care conditions

There are circumstances in which the value of an output doesn’t matter
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a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0 X X X X

0 0 0 1 X X X X

0 0 1 0 X X X X

0 0 1 1 X X X X

0 1 0 0 X X X X

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 X X X X

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 X X X X

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

• For example, in that 2-bit multiplier, what if we are told 
that a and b will be non-0? We “don’t care” what the 
output looks like for the input cases that should not 
occur

• Don’t care situations are denoted by an “X” in a truth 
table and in Karnaugh maps.

• Can also be expressed in minterm form:

• During minimization can be treated as either a 1 or a 0

z2 =  ∑m(10,11,14)
d2 = ∑m(0,1,2,3,4,8,12)



 2-bit multiplier non-0 multiplier
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a1 a0 b1 b0 z3 z2 z1 z0

0 0 0 0 X X X X

0 0 0 1 X X X X

0 0 1 0 X X X X

0 0 1 1 X X X X

0 1 0 0 X X X X

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 X X X X

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 X X X X

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

z3 = z2 =

X X X X

X 0 0 0

X 0 1 0

X 0 0 0
a1

a0

X X X X

X 0 0 0

X 0 0 1

X 0 1 1

b1

b0 b0

b1

1’s must be covered
0’s must not be covered
X’s are optionally covered

a1

a0



 2-bit multiplier non-0 multiplier (2)
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X X X X

X 1 1 0

X 1 1 0

X 0 0 0

a0
a1

X X X X

X 0 1 1

X 1 0 1

X 1 1 0

a0
a1

b0 b0

b1 b1

z1 = 

a1 a0 b1 b0 z3 z2 z1 z0
0 0 0 0 X X X X
0 0 0 1 X X X X
0 0 1 0 X X X X
0 0 1 1 X X X X
0 1 0 0 X X X X
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 X X X X
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 X X X X
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

z0 = 



Final thoughts on Don’t care conditions

Sometimes “don’t cares” greatly simplify circuitry
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1 X X X

X 1 X X

0 0 1 X

0 0 X 1
A

D

C

B

ABCD + ABCD + ABCD + ABCD  vs. A + C 



Glitches and Hazards



• Glitch: an unintended change in circuit output

• Hazard: the hardware structures that cause a glitch to occur

• Caused by multiple path delays through a circuit

• Example: AB + BC

• Avoidance

• Synchronous design (coming later)

• Extra implicants

Glitches and hazards
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