CSEE 3827: Fundamentals of Computer Systems

Information Representation

• 10 digits = $\{0,1,2,3,4,5,6,7,8,9\}$

• example: 4537.8 = (4537.8) ₁₀

4 5 3 7 . 8

• 10 digits = $\{0,1,2,3,4,5,6,7,8,9\}$

• example: 4537.8 = (4537.8) ₁₀

• 10 digits = $\{0,1,2,3,4,5,6,7,8,9\}$

• example: 4537.8 = (4537.8) ₁₀

• 10 digits = $\{0,1,2,3,4,5,6,7,8,9\}$

• example: 4537.8 = (4537.8) ₁₀

Number systems: Base 2 (Binary)

• 2 digits = $\{0,1\}$

• example: 1011.1 = (1011.1)₂

1 0 1 1 . 1

Number systems: Base 2 (Binary)

```
• 2 digits = \{0,1\}
```

• example: 1011.1 = (1011.1) ₂

Number systems: Base 8 (Octal)

• 8 digits = $\{0,1,2,3,4,5,6,7\}$

• example: (2365.2) 8

2

3

6

5

Number systems: Base 8 (Octal)

```
• 8 digits = \{0,1,2,3,4,5,6,7\}
```

• example: (2365.2) 8

Number systems: Base 16 (Hexadecimal)

• 16 digits = $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

• example: (26BA) [alternate notation for hex: 0x26BA]

2 6 B A

Number systems: Base 16 (Hexadecimal)

• 16 digits = $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

• example: (26BA) [alternate notation for hex: 0x26BA]

Hexadecimal (or hex) is often used for addressing

Map infinite numbers onto finite representation for a computer

How many numbers can I represent with ...

... 5 digits in decimal?

... 8 binary digits?

... 4 hexadecimal digits?

Map infinite numbers onto finite representation for a computer

How many numbers can I represent with ...

... 5 digits in decimal? 10⁵ possible values

... 8 binary digits?

... 4 hexadecimal digits?

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...

... 5 digits in decimal?
$$10^5$$
 possible values ... 8 binary digits? 2^8 possible values

... 4 hexadecimal digits?

- Map infinite numbers onto finite representation for a computer
- How many numbers can I represent with ...

Need a bigger range?

- Change the encoding.
- Floating point (used to represent very large numbers in a compact way)

• A lot like scientific notation:
$$5.4 \times 10^{5}$$
 exponent mantissa

• Except that it is binary:

What about negative numbers?

- Change the encoding.
 - Sign and magnitude
 - Ones compliment
 - Twos compliment

Sign and magnitude

- Most significant bit is sign
- Rest of bits are magnitude

$$0110 = (6)_{10} \qquad 1110 = (-6)_{10}$$

Two representations of zero

$$0000 = (0)_{10}$$
 $1000 = (-0)_{10}$

Ones compliment

- Compliment bits in positive value to create negative value
- Most significant bit still a sign bit

$$0110 = (6)_{10}$$
 $1001 = (-6)_{10}$

Two representations of zero

$$0000 = (0)_{10}$$
 $1111 = (-0)_{10}$

Twos compliment

- Compliment bits in positive value and add 1 to create negative value
- Most significant bit still a sign bit

$$0110 = (6)_{10}$$
 $1001 + 1 = 1010 = (-6)_{10}$

One representation of zero

$$0000 = (0)_{10}$$
 $1000 = (-8)_{10}$ $1111 = (-1)_{10}$

• One more negative number than positive

MIN:
$$1000 = (-8)_{10}$$
 MAX: $0111 = (7)_{10}$

How about letters?

How about letters?

• Change the encoding.

□ TABLE 1-5 American Standard Code for Information Interchange (ASCII)

$B_4B_3B_2B_1$	$\mathbf{B}_{7}\mathbf{B}_{6}\mathbf{B}_{5}$								
	000	001	010	011	100	101	110	111	
0000	NULL	DLE	SP	0	@	P		p	
0001	SOH	DC1	!	1	Α	Q	a	q	
0010	STX	DC2	H .	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	S	
0100	EOT	DC4	\$	4	D	T	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	
0110	ACK	SYN	&	6	F	\mathbf{v}	f	\mathbf{v}	
0111	BEL	ETB	,	7	G	\mathbf{W}	g	w	
1000	BS	CAN	(8	H	X	h	X	
1001	HT	\mathbf{EM})	9	I	Y	i	y	
1010	LF	SUB	*	:	J	\mathbf{Z}	j	z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	Ĭ	1	Ì	
1101	CR	GS	-	=	M]	m	}	
1110	SO	RS		>	N	^	n	~	
1111	SI	US	/	?	O		0	DE	

Gray code

Binary numeric encoding where successive numbers differ by only 1 bit

value	BCD	# bit flips	
0	000	3	
1	001	1	
2	010	2	
3	011	1	
4	100	3	
5	101	1	
6	110	2	
7	111	1	

Gray	# bit flips
000	1
001	1
011	1
010	1
110	1
111	1
101	1
100	1

Some definitions

• bit = a binary digit

e.g., 1 or 0

• byte = 8 bits

e.g., 01100100

word = a group of bytes

a 16-bit word = 2 bytes e.g., 1001110111000101

a 32-bit word = 4 bytes e.g., 1001110111000101011110111000101