CSEE 3827: Fundamentals of Computer Systems

Pipelined MIPS Implementation

Single-Cycle CPU Performance Issues

* [ongest delay determines clock period

e Critical path: load instruction

¢ instruction memory — register file = ALU — data memory — register file

* Not feasible to vary clock period for different instructions

e \We will improve performance by pipelining

Pipelining Laundry Analogy

6 PM 7

Time —_
|

Task

order
v O

B

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy,and Don each have dirty clothes
to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for
their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours.
We show the pipeline stage of different loads over time by showing copies of the four resources on this
two-dimensional time line, but we really have just one of each resource. Copyright © 2009 Elsevier, Inc. All
rights reserved.

MIPS Pipeline

* Five stages, one step per stage

e |[F: Instruction fetch from (instruction) memory

e |ID: Instruction decode and register read (register file read)

e EX: Execute operation or calculate address (ALU) or branch condition +
calculate branch address

e MEM: Access memory operand (memory) / adjust PC counter

e \WB: Write result back to register (reg file again)

e Note: not every instruction needs every stage

PS Pipeline lllustration 1

400 600 800

Time

add $s0, $t0, $t1 SEX

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the
laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with the
abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for the
instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/register
file read stage, with the drawing showing the register file being read; EX for the execution stage, with the
drawing representing the ALU; MEM for the memory access stage, with the box representing data memory;
and WB for the write-back stage, with the drawing showing the register file being written. The shading
indicates the element is used by the instruction. Hence, MEM has a white background because add does not
access the data memory. Shading on the right half of the register file or memory means the element is read
in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is shaded
in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage because
the register file is written. Copyright © 2009 Elsevier, Inc. All rights reserved.

Grey: used by
Instruction
(RHS = read,
LHS = written)

PS Pipeline lllustration 2

Time (in clock cycles)

Program |
execution CC1 |
order |
(in instructions) :

CC2

| ——
w $1, 100($0) __CReg

L ——

w $2, 200($0) L Reg

L ——

Iw $3, 300($0)

/

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33,
assuming pipelined execution. Similar to Figures 4.28 through 4.30, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in
Figure 4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands
for the register file and sign extender in the instruction decode/register file read stage (ID), and so on. To
maintain proper time order, this stylized datapath breaks the register file into two logical parts: registers
read during register fetch (ID) and registers written during write back (WB). This dual use is represented
by drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being
written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before,
we assume the register file is written in the first half of the clock cycle and the register file is read during the
second half. Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipeline Performance 1

e Assume time for stages is

e 100ps for register read or write

e 200ps for other stages

e Compare pipelined datapath to single-cycle datapath

Instr IF ID EX MEM Total (PS)

1w 200 800
SW 200 /700
R-format 600

beq 500

Plpeline Performance 2

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800

order
(in instructions)

Instruction Data
w $1, 1OO($O) fetch ALU access

Single-cycle Tclock = 800ps

lw $2, 200($0) 800 ps Instruction Data

fetch access

w $3, 300($O) Ins;r;m:cc:;[]ion

= Total time: 2400 ps

800 ps

Program
execution Time 200 400 600 800 1000 1200

order
(in instructions)

Data

Instruction
lw $1’ 100($0) fetch Reg| ALU access Reg

Pipelined Tclock = 200ps

w $2, 200($0) m Instruction Reg| ALU Data Reg

fetch access

w $3, 300($O) 200 ps Instruction Reg| ALU Data Reg

fetch access

200 ps 200 ps 200 ps 200 ps 200 ps Total time: 1400 ps

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in
bottom. Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a
fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource,
either the ALU operation or the memory access. We assume the write to the register file occurs in the first
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption
throughout this chapter. Copyright © 2009 Elsevier, Inc. All rights reserved.

/

Pipeline Speedup

e Speedup due to increased throughput.

e |f all stages are balanced (i.e., all take the same time)

Pipeline instr. completion rate = Single-cycle instr. completion rate * Number of stages

e |f not balanced, speedup is less

PS Pipelined

Datapath

PS Pipelined Datapath

IF: Instruction fetch ID: Instruction decode/ EX: Execute/
register file read address calculation

MEM: Memory access WB: Write back

Read Read
Address register 1 data 1

Zero
Read
ALU
register 2 ALU Address

. result
Instruction Registers o
data

Write Read Data
Instruction register data 2 Memory
memory .

Write

data Write
data

»
=

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto
the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU
result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.)
Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipeline registers

e Need registers between stages, to hold information produced in previous
cycle

d Add
result

Read
" | register 1

Address

Read
data 1
Read Zero

register 2 ALU ALU

Instruction i
Registers o g result Address

memory Write data 2
register / Data

Write memory
data

Instruction

I_l_l

16 f
X | Sign- 32
| extend

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID
register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address.
We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 bits,

respectively. Copyright © 2009 Elsevier, Inc. All rights reserved.

IF for Load

iy

Instruction fetch

MENM/WA

ID for Load

Iw

Instruction decode

EX for Load

MEM for Load

alracten

WB for Load

Acd
result

ade

mucicn

Wrong /

register number!

Corrected Datapath for Load

EX/MEM

Read

Address
register 1

Y

Instruction

Read

register 2
Registers Address

Write
register

Write
data

Instruction
memory

Data
memory

Y I

16 ; 32
. . | Sign-
v 7| extend

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the
MEM/WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color. Copyright © 2009 Elsevier,

Inc. All rights reserved.

(A single-cycle pipeline diagram)

Pipeline Operation

e Cycle-by-cycle flow of instructions through the pipelined datapath

* “Single-clock-cycle” pipeline diagram

e Shows pipeline usage in a single cycle

e Highlight resources used

e c.f. “multi-clock-cycle” diagram

e Graph of operation over time

e \We’ll look at “single-clock-cycle” diagrams for load

Single-Cycle Pipeline Diagram

e State of pipeline in a given cycle

add $14, $5, $6 lw $13, 24 ($1) add $12, $3, $4 sub $11, $2, $3 | lw $10, 20($1) |

Instruction fetch Instruction decode Execution Memory | Write-back |

EX/MEM

Add

Add
result

Address Read

register 1 Read
data 1

Read
register 2

Registers Read
Write data 2
register Data
Write memory
data

llnstruction

Instruction
memory

| Address

result

Write
data

1 P 2
6; Sign- 3

—>{ extend "

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram. Copyright © 2009 Elsevier, Inc. All rights

reserved.

Multi-Cycle Pipeline Diagram

* Form showing resource usage over time

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

—E:ReEI_

1
Regjl

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete
execution of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move
from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw

this diagram. Copyright © 2009 Elsevier, Inc. All rights reserved.

Multi-Cycle

¢ Traditional form

Program
execution
order

(in instructions)

Time (in clock cycles)

CC 1

Ppeline

CC?2

Diagram 2

CC3

CC4

CC5

lw $10, 20($1)

Instruction
fetch

Instruction
decode

Execution

Data
access

Write-back

CC6

sub $11, $2, $3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Instruction
fetch

Instruction
decode

Execution

Data
access

Write-back

CC7

Instruction
fetch

Instruction
decode

Execution

Data
access

Write-back

CC 8

Instruction
fetch

Instruction
decode

Execution

Data
access

Write-back

Instruction
fetch

Instruction
decode

Execution

Data
access

Write-back

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43. Copyright © 2009

Elsevier, Inc. All rights reserved.

Pipelined Control (Simplified)

Address

Instruction
memory

Instruction

RegWrite
|

Read

register 1 Read
g data 1
Read
register 2
Registers
Write Read

register data 2

Write

EX/MEM

By

MemWrite
|

Address

Data
memory

MemtoReg

_>

data

Instruction
(15-0) 16 [sign- | 32
vV 7 | extend MemRead

Instruction
(20-16)

Instruction
(15—11)

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows the control
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct field (function
code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that
these 6 bits are also the 6 least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the
immediate field since sign extension leaves these bits unchanged. Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipelined Control Scheme

e As in single-cycle implementation, control signals derived from instruction

|wWB

Instruction
—1 Control

IF/ID ID/EX EX/MEM MEM/WB

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines
are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register
extended to hold the control lines; three are used during the MEM stage, and the last two are passed to
MEM/WB for use in the WB stage. Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipeline Control Values

e Control signals are conceptually the same as they were in the single cycle
CPU.

e ALU Control is the same.

e Main control also unchanged. Table below shows same control signals
grouped by pipeline stage

Execution/address calculation stage Memory access stage Write-back stage
control lines control lines control lines
Mem- Reg- Memto-
RegDst ALUOPO Read Write Reg
1 0 0] 1 0
Tw

0 0 1 1 1
Sw X 0] 0 0 X
beq X 1 0 0 X

R-format

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into three
groups corresponding to the last three pipeline stages. Copyright © 2009 Elsevier, Inc. All rights reserved.

Controlled Pipelined C

EX/MEM
Ly

WB

> Control

Read
register 1 Read

data 1
Read
Instruction register 2)
memory Write Registers g,
register data 2 Data
e X memory

data

Address

RegWrite
MemWrte\\’J

MemtoReg

Instruction

i

Address

xc =

—_

Instruction

[15-0] 16 Sign-
> extend MemRead

Instruction
[20-16]

Instruction
[15—11]

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control sighals connected to the control portions of the
pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX
pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage. Copyright ©

2009 Elsevier, Inc. All rights reserved.

Hazard

e A hazard is a situation that prevents starting the next instruction in the next
cycle

e Structure hazards occur when a required resource is busy

e Data hazards occur when an instruction needs to wait for an earlier
iInstruction to complete its data write

e Control hazards occur when the control action (i.e., next instruction to fetch)
depends on a value that is not yet ready

Structure Hazard

e Conflict for use of a resource

e In a MIPS pipeline with a single memory

¢ |_oad/store requires memory access

e Instruction fetch would have to stall for that cycle

e This introduces a pipeline bubble

¢ Hence, pipelined datapaths require separate instruction and data memories
(or separate instruction and data caches)

Data Hazards

e An instruction depends on completion of data access by a previous
iInstruction

4)

add , Si 0, $tl $s0 set during WB phase

sub $t2, r St3 $s0 read during ID phase
y

_

. 400 600 800 1000 1200 1400 1600
Time I I T I 1 —>

add $s0, $t0, $t1 SEX MEM

bubble oubble) (bubble bubble) (bubble
9 9 o O
bubble bubble?) (bubble bubble) (bubble
@ 9 () 8

sub $t2, $s0, $t3 IF —E 1D %—MEM

Forwarding (aka Bypassing)

e Use result when it is computed

e Don’t wait for it to be stored in a register

e Requires extra connections in the datapath

Program

800

execution | 400 600
order Time . .

(in instructions)

add $s0, $t0, $t1

sub $t2, $s0, $t3

SEX

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register
$50 read in the second stage of sub. Copyright © 2009 Elsevier, Inc. All rights reserved.

| oad-Use Data Hazard

e Can’t always avoid stalls by forwarding
e |f value not computed when needed

e Can’t forward backward in time!

Program

execution _ 400 600 800 1000 1200 1400
order Time :

(in instructions) '
lw $s0, 20($t1) § SEX

sub $t2, $s0, $t3

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following
a load tries to use the data. Without the stall, the path from memory access stage output to execution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4.7 shows the details of what really happens in the case of a hazard. Copyright © 2009
Elsevier, Inc. All rights reserved.

Code Scheduling to Avoid Stalls

e Reorder code to avoid use of load result in the next instruction

MIPS assembly code for

A =B+ E; C

1w
1w
add
SW
1w

add
SW

Stl, 0(St0)
($t2)_4($t0)
$t3, 12($t0)
($t4)_8($t0
st5, st1,($t4)

$St5, 16(S$t0)
J

13 cycles

= B + F;

lw S$tl, 0($t0)

SW St3,
add St5,
sw $t5, 16($t0)

11 cycles

Control Hazards

¢ Branch determines flow of control

¢ Fetching next instruction depends on branch outcome

® Pipeline can’t always fetch correct instruction

e Still working on ID stage of branch

e In MIPS pipeline

* Need to compare registers and compute target early in the pipeline

e Add hardware to do it in ID stage (See Sec. 4.8)

Stall on Branch

e \Wait until branch outcome determined before fetching next instruction

Program

execution : 200 400 600 800 1000 1200 1400
Time | | | | | | |
order

(in instructions)

- Computation’s outcome
Instruction Data
add $4, $5, $6 | (ecn Reg access | 9 / determines which
. / N '
Instruction Data instruction should be next
beq $1’ $2’ 40 200 DS fetch Reg access

bubble‘ bubble¢(_bubble bubble
O

39 Words iater or $7, $8, $9 ~{Instro%tion Data
nmemory vy 400 ps fetch access

Reg

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control
hazards. This example assumes the conditional branch is taken, and the instruction at the destination of
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance,
however, is the same as would occur if a bubble were inserted. Copyright © 2009 Elsevier, Inc. All rights
reserved.

Branch Prediction

¢ | onger pipelines can’t readily determine branch outcome early

e Stall penalty becomes unacceptable

¢ Predict outcome of branch

e Only stall if prediction is wrong

e In MIPS pipeline

e Can predict branches not taken

e Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Program
execution
order

4 Y\ (in instructions)

pred|Ct|On add $4, $5. $6 Instruction Reg Data Reg

fetch access

200 400 600 800 1000 1200

Time

CO rreCt Instruction Data
\ beq $1’ $2’ 40 200 ps fetch Reg ALU access Reg

~— | Instruction Data

lw $3, 300($0) 200 ps| fetch Reg| ALU access

/

Program
execution
order

4 Y\ (ininstructions)

Tasd Instructi Dat
prediction add $4, 65,86 |"ecln| | Reg| A | %2 | Reg

200 400 600 800 1000 1200

Time

IﬂCOI’reCt beq $1, $2, 40 Instruction Reg ALU Data Reg

access

bubble/(bubble/(bubble/ bubble/(bubble
O @, ©,

—or $7, $8, $9 >{Instruction Data
400 ps fetch Reg | ALU access | 1°9

\) | 200 pS fetch

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details. Copyright © 2009 Elsevier, Inc. All rights reserved.

More-Realistic Branch Prediction

e Static branch prediction
e Based on typical branch behavior
e Example: loop and if-statement branches - default predictions:
e backward branches taken (while / for loops run multiple iterations)
e forward branches not taken (if/else usually “if”, not “else”
e Dynamic branch prediction
e Hardware measures actual branch behavior
® e.g., record recent history of each branch
e Assume future behavior will continue the trend

e \When wrong, stall while re-fetching, and update history

Pipeline Summary

® Pipelining improves performance by increasing instruction throughput

e Executes multiple instructions in parallel

e Each instruction has the same latency

e Subject to hazards

e Structure, data, control

¢ Instruction set design affects complexity of pipeline implementation

Data Hazards in ALU Instructions

e Consider this instruction sequence:
sub $2,$1,S3
and $12,$2,$5
or $13,$6,S$2
add $14,S$2,52
sw $15,100($2)

¢ \\le can resolve hazards with forwarding

e How do we detect when to forward?

Dependencies & Forwarding

Time (in clock cycles)
Value of CC1 CC2 CC3 CC4 CC5 CCé6 CC7

register $2: 10 10 10 10 10/-20 -20 -20 -20

Program
execution
order

(in instructions)

sub 52, $1, $3 Red |

—[DM—
/
and $12, $2, $5 ' %
ﬁﬁeé

or $13, $6, $2

add $14, $2,$2

sw $15, 100(52) _CReg Reg

I—

| —

FIGURE 4.52 Pipelineddependences in afive-instruction sequence using simplified datapaths to show the dependences.
All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction writes into $2, and
all the following instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a
register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from
the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards. Copyright © 2009

Elsevier, Inc. All rights reserved.

Detecting the Need to Forward

* Pass register numbers along pipeline: Stage.Regldentifier

e c.0., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline
register

e ALU operand register numbers in EX stage are given by ID/EX.RegisterRs,
ID/EX.RegisterRt

e Data hazards when
(e.g., add Rd, Rs, Rt)

1a. EX'MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt vipeline reg
(e.qg., Iw Rs, C(Rt))

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs Fwd from
MEM/WB

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt oipeline reg

Simplified Pipeline w. No Forwarding

5

a. No forwarding

Simplified

Pipeline w. Forwarding

Registers

ForwardB|

>

EX/MEM.RegisterRd
>

>

»| FOrwarding

M EMWB.Regusteer

- unit -

b. With forwarding

Simplified Pipeline w. Forwarding

)
M
u
X

./

Reg[sters s ForwardA

ForwardB|

| Forwarding
. |
- unit |-

MEM"WB.Regusteer

b. With forwarding

keep track of register sources/targets for in-flight instructions

Simplified Pipeline w. Forwarding

M
u
X

Reglsters s ForwardA

M
u
X

1

ForwardB|

>

£

. Forwa_romg ‘; MEM/WB.RegisterAd
- unit /<

EX/MEM.RegsterRd
.

b. With forwarding

option of routing previously calculated values directly to ALU

Simplified Pipeline w. Forwarding

)
M
u
X

./

Reg[sters s ForwardA

ForwardB|

>

EX/MEM. RegsterRd
.

Forwarding
unit

MEM"WB.Regusteer

b. With forwarding

Operand forwarding (aka register bypass) controlled by forwarding unit

Forwarding Conditions

e EX hazard
e if

ForwardA = 10

e 1f

ForwardB = 10

e MEM hazard

e 1 f
and (MEM/WB
ForwardA = 01

e if (MEM/WB
and (MEM/WB

ForwardB = 01

(EX/MEM.
and (EX/MEM.

(EX/MEM.
and (EX/MEM.

(MEM/WB.
.RegisterRd =

RegWrite and (EX/MEM.RegisterRd
RegisterRd = ID/EX.RegisterRs))

RegWrite and (EX/MEM.RegisterRd
RegisterRd = ID/EX.RegisterRt))

RegWrite and (MEM/WB.RegisterRd
ID/EX.RegisterRs))

.RegWrite and (MEM/WB.RegisterRd
.RegisterRd =

ID/EX.RegisterRt))

Double Data Hazard

e Consider the sequence:

add $1,S1,S2
add $1,S1,S3
add $1,5$1,$4

e Both hazards occur

e \Want to use the most recent

e Revise MEM hazard condition

e Only fwd if EX hazard condition isn’t true

Revised Forwarding Condition

e MEM hazard

Condition for
EX hazard on

eif (MEM/WB.RegWrite and (MEM/WB.RegisterRd =# 0) Registeriis

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

Condition for
EX hazard on

eif (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0) Registerhit
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Datapath with Forwarding

EX/MEM

— Control »\WB

N\

M

Registers

| Instruction

_ | Instruction
memory

Data
memory

IF/ID.RegisterRs

IF/ID.RegisterRt
IF/ID.RegisterRt

4 -

EX/MEM.RegisterRd
>

IF/ID.RegisterRd > ‘
=\ Forwarding\, |

MEM/WB.RegisterRd
\ 4

V\ unit /=

FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such
as the branch hardware and the sign extension hardware. Copyright © 2009 Elsevier, Inc. All rights reserved.

| oad-Use Data Hazard

Time (in clock cycles)
CC1 CC2

Program
execution

order Need to stall for one cycle

(in instructions)

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

[— -1
slt $1, $6, $7 —CReg —|Eeg:

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes
backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

Copyright © 2009 Elsevier, Inc. All rights reserved.

| oad-Use Hazard Detection

e Check when using instruction is decoded in ID stage
e ALU operand register numbers in ID stage are given by

e |[F/ID.RegisterRs, IF/ID.RegisterRt

¢ Load-use hazard when Reg to write 1o

if ID/EX.MemRead ////
and ((ID/EX.Registe;j IF/ID.RegisterRs)

or
(ID/EX.Registel IF/ID.RegisterRt))

¢ |[f detected, stall and insert bubble

How to Stall the

Pipeline

e Force control values in ID/EX register to O

e Prevent update of PC and IF/ID register

e Using instruction is decoded again

¢ Following instruction is fetched again

* 1-cycle stall allows MEM to read data for lw

e Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC 1 CC2 CC3 CC4 CC5 CC6 CC7 CC 8 CC9 CC10

Program
execution
order

(in instructions)

Stall inserted here

lw $2, 20($1)

bubble

and becomes nop

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed
until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no
further hazards occur. Copyright © 2009 Elsevier, Inc. All rights reserved.

Datapath with Hazard Detection

Hazard ID/EX.MemRead

-~ detection

— unit /

A

ID/EX
WB

IF/DWrite

EX

Registers

[Instruction

Instruction
memory

Data
memory

:@ :

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

Yy VYV Y VY

€ ﬁxcg)rc'xca

FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements. Copyright © 2009 Elsevier, Inc. All rights reserved.

Stalls and Performance

e Stalls reduce performance

e But are required to get correct results

e Compiler can arrange code to avoid hazards and stalls

e Requires knowledge of the pipeline structure

Branch Hazards

e Determine branch outcome and target as early as possible

* Move hardware to determine outcome to ID stage

e Target address adder

e Register comparator

Branch Taken 1

and $12, $2, $5 beq $1, 83,7 E sub $10, 4,58 before<i> before<2>

IF. Flush

LT sl s — b o -

_.l' Forwarding '
_.\\ unit

" 1‘

. EE R 5 -

Branch Taken 2

lw 34, 50(87)

IF Flush

Bubble (nop) : : sub $10, ... before<i>

[Hazard O\
————41 datection &
"\ unit /‘

ettt B e

W o
! T OrwWarcling -y

——— ol |-y
. S

v
'
A
.

Data Hazards for Branches 1

e |[f a comparison register is a destination of 2nd or 3rd preceding ALU
instruction — can resolve using forwarding

Data Hazards for Branches 2

¢ |[f a comparison register is a destination of preceding ALU instruction or 2nd
preceding load instruction = need 1 stall cycle

Data Hazards for Branches 3

¢ |[f a comparison register is a destination of immediately preceding load
iInstruction — need 2 stall cycles

