CSEE 3827: HOMEWORK 6

DUE: WEDNESDAY 5/5/10

This homework is due by Ipm on Wednesday 5/5. To turnin your homeworks you may either scan and

upload to courseworks, or hand-deliver it to Prof. Kim’s office in 469 CSB.

1. To date we have not explicity stated the size (in number of bits) of the pipeline registers in our 5-stage
MIPS pipeline. In the pipelined processor shown below, calculate the bitwidth of the four pipeline
registers: IF/ID, ID/EX, EX/MEM, and MEM/WB. Be sure to include the necessary control signals
in your final totals. NB: This version of the processor does not have support for operand forwarding

or stalls.

PCSrc

ID/EX

B

WB

Data
memory

Read
data

T
Y

MemRead

e ﬁxxmsm
Control M —‘ wB
Lo -
EX M
IF/ID
Add
4 Adg Ad0
Shift res Branch
2 left 2 L
= ALUSrc
=)
3 —

L-(0 T o
v Add =
u > ress s Read =

5 register 1 Read > 5
— 1)(E 9 data 1 2
% | —
—»| 52
Instruction = register 2
memory 1 Write Registers g Address
register data 2
Write
| data
Write
data
Instruction
[15-0] 16 sign- | 32
extend
Instruction
[20-16]
Instruction
[15-11]
— RegDst L

EM/WB

MemtoReg

—]
("xcz®°

2. Structural, data and control hazards typically require a processor pipeline to stall. Listed below are a
series of optimization techniques implemented in a compiler or a processor pipeline that are designed
to reduce or eliminate stalls due to these hazards. For each of the following optimizations, state which
pipeline hazards it addresses and how it addresses it. Some optimization techniques may address more

than one hazard, so be sure to include explanations for all addressed hazards.

(a) Branch Prediction
(b) Bypass/forwarding Logic

(d) Increasing the number of functional units (ALUs, adders, etc.)

)
(¢) Instruction Scheduling
)
(e) Caches

3. Consider the following code sequence:

add $t0, $a0, $s0
1w $t1, 0($t0)
add $t1, $t1, $t1
sw $t1, 0($t0)

(a) Assuming a MIPS processor that has the standard 5-stage pipeline with the ability to stall (i.e.,
insert bubbles in the execute stage) but has no forwarding paths whatsoever. Complete the
execution schedule on this processor for the above code snippet as begun below. You may assume
all memory accesses complete in a single cycle.

Instr cCq CCo CC3 CCyq CCs CCgq ccr CCg CCo CC10 CC11 CC12 CC13 CC14 CC15 CC16
add IF ID EX MEM WB
1w
add
sw
(b) Assuming now that the processor does have full forwarding hardware (i.e., can forward from MEM
to EX and from WB to EX) what would the schedule look like?
Instr cCq CCo CC3 CCyq CCs CCgq ccr CCg CCo CC10 CC11 CC12 CC13 CC14 CC15 CC16
add IF ID EX MEM WB
1w
add
sw

(c) Would there be any performance benefit if the programmer substituted s11 $t1, $t1, 2 for the
second add instruction above? Why or why not?

4. Assume a stack of 32-bit integers, where the base address of the stack is 0x00006000.

(a) Give a list of the six addresses that are accessed by the following sequence of operations:

stack.push(1)
stack.push(2)
stack.push(3)
stack.pop()
stack.pop()
stack.pop()

(b) Hlustrate the state of a 64-byte, direct-mapped cache after these 6 memory operations. The cache
can hold 8 8-byte lines (i.e., 1 line = 2 words). You may assume the cache is empty at the start.
Be sure to show the state of the valid and tag bits in addition to the data values.

(c) What is the miss rate? The hit rate?

