CS

- 3827:

Lecture 23

April 29, 2009

Martha Kim
martha@cs.columbia.edu

-undamentals of Computer Systems

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu

Caching

Memory Technology

Static RAM (SRAM) — 0.5ns - 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM) — 50ns - 70ns, $20 — $75 per GB

Magnetic disk @ 5ms — 20ms, $0.20 - $2 per GB

Ideal memory = access time of SRAM + capacity and cost/GB of disk

CSEE 3827, Spring 2009 Martha Kim 3

2rinciple of Locality

Programs access a small proportion of their address space at any time

Temporal Locality:
ltems accessed recently are likely to be accessed again soon
e.q., Instructions in a loop, induction variables

Spatial locality:
ltems near those accessed recently are likely to be accessed soon
E.qg., sequential instruction access, array data

CSEE 3827, Spring 2009 Martha Kim 4

Taking Advantage of Locality

Organize memory hierarchically

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory — cache attached to CPU

Copy recently accessed (and nearby) items to smaller
DRAM memory — main memory

Store everything on disk

CSEE 3827, Spring 2009

Martha Kim

5

Canonical Memory Hierarchy

Current
Speed Processor Cost ($/bit) technology

Fastest Smallest Highest

Slowest Biggest Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many
embedded devices, and may lead to a new level in the storage hierarchy for desktop and server computers;
see Section 6.4. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim

Memory Hierarchy Levels

Block (aka line): unit of copying, may be
multiple words

Processor — |f accessed data is present in upper level
“ e Hit: access satisfied by upper level
e Hit ratio: hits/accesses
— |f accessed data is absent
Data is transferred e Miss: block copied from lower level
| ¢ Time taken: miss penalty
e Miss ratio: misses
— Accessed data then supplied from upper
level

Y

A

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block
or a line. Usually we transfer an entire block when we copy something between levels. Copyright © 2009
Elsevier, Inc. All rights reserved.

How do we know if the data is present?
Where do we look?

CSEE 3827, Spring 2009 Martha Kim 7

A General Memory Hierarchy

Increasing distance
Level 1 from the CPU in

access time
Levels in the / Level 2 \
memory hierarchy

/ Lovel \ |

< »
.|

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure, with the appropriate operating
mechanisms, allows the processor to have an access time that is determined primarily by level 1 of the hier-
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim

Direct Mapped Cache

¢ |_ocation determined by address

e Direct mapped: only one ¢ oice = (Block address) modulo (#Blocks in cache)

Cc

o
(]
—

If a power of two, use
low order address bits

00001 00101 01001 01101 10001 10101 11001 11101
Memory

FIGURE 5.5 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight words in
the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order log,(8) =
3 bits are used as the cache index. Thus, addresses 00001,,,,,, 010014, 10001, and 11001,,,, all map to entry
0014, of the cache, while addresses 00101, 01101, 10101, and 11101, all map to entry 101, of
the cache. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim 9

Tags and Valid Bits

e How do we know which particular block is stored in a cache location?

e Store block address as well as the data

e Actually, only need the high-order bits

e Called the tag

e \What if there is no data in a location?

¢ Valid bit: 1 = present, 0 = not present

e Initially 0

CSEE 3827, Spring 2009 Martha Kim 10

Address Subdivision

Address (showing bit positions)

3130 --- 131211--:2 10
Byte
offset

Index Valid Tag
0
1
2

FIGURE 5.7 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KB. We assume 32-bit
addresses in this chapter. The tag from the cache is compared against the upper portion of the address to
determine whether the entry in the cache corresponds to the requested address. Because the cache has 2!°
(or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 32 — 10 — 2 =20 bits
to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on,
then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs.
Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim 11

Cache Example 1

8-block cache, 1 word/block, 32B memory

Index
0 0

Tag Data

_ O |k || |Oo | |O
Olo|lo|lo|o|lo (oo ||

Initial state after power on

CSEE 3827, Spring 2009 Martha Kim 12

—Xample 2

Mem[10110]

_ O |k || |Oo | |O
ol |lololo|jlo|jo |o||L

After hanadling miss of address 10770

CSEE 3827, Spring 2009 Martha Kim 13

—xample 3

Mem[11010]]

Mem[10110]

_ O |k || |Oo | |O
o|lr|lolo|lo|—r | |o||L

After hanadling miss of address 11070

CSEE 3827, Spring 2009 Martha Kim 14

—Xample 4

Data
Mem[10000]

Mem[11010] |

Mem[10110]

= O |k |O | |0 | |O
O lrRr ||l | O] ||

After handling miss of address 710000

CSEE 3827, Spring 2009 Martha Kim 15

—xample 5

Data
Mem[10000]

Mem[11010] |
Mem[00011]

Mem[10110]

=[O | |O | |O |k |O
O|lr|olo~ |k ||k ||L

After handling miss of address 00011

CSEE 3827, Spring 2009 Martha Kim 16

—Xample 6

Data
Mem[10000]

Mem[10010]
Mem[00011]

Mem[10110]

=[O | |O | |O |k |O
O|lr |l |k ||k ||L

After hanadling miss of address 10070

CSEE 3827, Spring 2009 Martha Kim 17

Multi-word Cache Blocks

32-bit memory address

32-n-m-2 bits m bits n bits 2 bits
/ ?

Index into cache
(cache = 2"\m blocks)

tag

index into block
(block = 2 \n words)

index into word
(word = 4 bytes)

CSEE 3827, Spring 2009 Martha Kim 18

—xample: Larger Block Size

e 64 blocks, 16 bytes/block
e To what block number does address 1200 map?
e Block address = floor(1200/16) = 75

¢ Block number = 75 modulo 64 = 11

32-bit memory address
22 bits 6 bits

CSEE 3827, Spring 2009 Martha Kim 19

Block Size Considerations

e | arger blocks should reduce miss rate, due to spatial locality

e But in a fixed-sized cache

e | arger blocks — fewer of them — more competition — increased miss rate

e | arger blocks — pollution

e | arger miss penalty, which could override benefit of reduced miss rate

CSEE 3827, Spring 2009 Martha Kim 20

Handling Cache Misses

e On cache hit, CPU proceeds normally
e On cache miss
e Stall the CPU pipeline
e Fetch block from next level of hierarchy
e After Instruction cache miss, restart instruction fetch

e After data cache miss, complete data access

CSEE 3827, Spring 2009 Martha Kim 21

Handling Writes: Write Through

e On data-write hit, could just update the block in cache, but then cache and
memory would be inconsistent

e Write through: on write, update memory as well as cache

e Makes writes take longer (e.qg., if base CPl =1, 10% of instructions are
stores, write to memory takes 100 cycles, effective CPl =1 + 0.1x100 =
11)

e Solution: write buffer which holds data waiting to be written to memory.
CPU can now continue immediately, stalling only if write buffer is full.

CSEE 3827, Spring 2009 Martha Kim 22

Handling Writes: Write

e An alternative to write through

e Write through: on data-write hit, just update the block in cache

e Keep track of whether each block is dirty

e \When a dirty block is replaced, write it back to memory

e Can use a write buffer to allow replacing block to be read first

CSEE 3827, Spring 2009 Martha Kim 23

—xample: Intrinsity FastMATH

e Embedded MIPS processor
¢ 12-stage pipeline
¢ |Instruction and data access on each cycle
e Split cache: separate |-cache and D-cache
e Fach 16KB: 256 blocks x 16 words/block
e SPEC2000 miss rates
e |-cache: 0.4%
e D-cache: 11.4%
e \Weighted average: 3.2%

CSEE 3827, Spring 2009 Martha Kim 24

Computer Architecture, Then and Now and Here

History of Processor Performance

Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
6505

52%/year

=)
[o6]
N~
~
bl
D
x
<
>
w
=
(0]
(&)
C
]
£
P -
o
T
(O]
o

VAX-11/780 _.-x"
/ 25%lyear o 5 VAX-11/785
o o

1 1 1 1 1 1 1 1 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009

Martha Kim

26

History of Processor Performance

Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
6505

CSEE 3827

52%/year

<)
0]
N~
~
—
\D
x
<
>
(2]
2
[0
(@]
[
©
£
=
o
t
[0
[a

IBM RS6000/540
MIPS M2000 o**

VAX-11/780 _..="""

--=7" 25%l/year g4 5 \AX-11/785

1 1 1 1 1 1 1 1 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009

Martha Kim

27

History of Processor Performance

Intel Xeon, 3.6 GHz __64-bit Intel Xeon, 3.6 GHz
6505

52%l/year

Performance (vs.VAX-11/780)

VAX-11/780 .27 CSEE 4824

/ 25%lyear o 5 VAX-11/785
o o

1 1 1 1 1 1 1 1 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009

Martha Kim

28

The Power \Wall

Clock Rate o(

66\ -

N
L
=3
e
©
o
X
3]
o
O

—_i
o
|

(2001)
Pentium 4
Prescott
(2004)
Core 2
Kentsfield
(2007)

Pentium 4
Willamette

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a
simpler pipeline with lower clock rates and multiple processors per chip. Copyright © 2009 Elsevier, Inc. All
rights reserved.

CSEE 3827, Spring 2009 Martha Kim

Sea Change in Architecture: Multicore

HT PHY, link 1 [Slow 1/O

128-bit FPU

Load/ | L1 Data

2MB Store | Cache
Shared

Execution L2
L3 ctl
Cache | Fetch/
Decode/ |L1 Instr
Branch |Cache

HT PHY, link 2

Northbridge

HT PHY, link 3

HT PHY, link 4 [Slow I/O|Fuses

FIGURE 1.9 Inside the AMD Barcelona microprocessor. The left-hand side is a microphotograph of the AMD Barcelona processor
chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or “cores” The microprocessor in the
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009 Martha Kim 30

Modern Processor Performance

While single threaded performance has leveled, multithreaded performance potential scaling.

10,000 Intel Xeon, 3.6 GHz __64-bit Intel Xeon, 3.6 GHz

6505

52%/year

=)
[o6]
N~
~
bl
D
x
<
>
w
=
(0]
(&)
C
]
£
P -
o
T
(O]
o

1.5, VAX-11/785

1 1 1 1 1 1 1 1 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year. Copyright © 2009 Elsevier, Inc. All rights reserved.

CSEE 3827, Spring 2009

Martha Kim

31

