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Amdahl’s Law

2

Be aware when optimizing. . .

T            =improved
T

improvement factor
+ T            unaffected

Example: On machine A, multiplication accounts for 80s out of 100s total 
CPU time.  

How much improvement in multiplication performance to get 5x 
speedup overall?

Corollary: make the common case fast

affected
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Single-Cycle CPU Performance Issues

• Longest delay determines clock period

• Critical path: load instruction 

• instruction memory → register file → ALU → data memory → register file

• Not feasible to vary clock period for different instructions

• We will improve performance by pipelining

3
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Pipelining Laundry Analogy

4
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MIPS Pipeline

• Five stages, one step per stage

• IF: Instruction fetch from memory

• ID: Instruction decode and register read

• EX: Execute operation or calculate address

• MEM:  Access memory operand

• WB: Write result back to register

5



CSEE 3827, Spring 2009 Martha Kim

MIPS Pipeline Illustration 1
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MIPS Pipeline Illustration 2
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Pipeline Performance 1

• Assume time for stages is 

• 100ps for register read or write

• 200ps for other stages

• Compare pipelined datapath to single-cycle datapath

8

Instr IF ID EX MEM WB Total (PS)

lw 200 100 200 200 100 800

sw 200 100 200 200 700

R-format 200 100 200 100 600

beq 200 100 200 500
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Pipeline Performance 2

9

Single-cycle Tclock = 800ps

Pipelined Tclock = 200ps
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Pipeline Speedup

• Speedup due to increased throughput.

• If all stages are balanced (i.e., all take the same time) 

• If not balanced, speedup is less

10

Pipeline instr. completion rate = Single-cycle instr. completion rate * Number of stages
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Hazard

• A hazard is a situation that prevents starting the next instruction in the next 
cycle

• Structure hazards occur when a required resource is busy

• Data hazards occur when an instruction needs to wait for an earlier 
instruction to complete its data write

• Control hazards occur when the control action (i.e., next instruction to fetch) 
depends on a value that is not yet ready

11



CSEE 3827, Spring 2009 Martha Kim

Structure Hazard

• Conflict for use of a resource

• In a MIPS pipeline with a single memory

• Load/store requires memory access

• Instruction fetch would have to stall for that cycle

• This introduces a pipeline bubble

• Hence, pipelined datapaths require separate instruction and data memories 
(or separate instruction and data caches)

12
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Data Hazards

• An instruction depends on completion of data access by a previous 
instruction

13

add $s0, $t0, $t1
sub $t2, $s0, $t3
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Forwarding (aka Bypassing)

• Use result when it is computed

• Don’t wait for it to be stored in a register

• Requires extra connections in the datapath

14
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Load-Use Data Hazard

• Can’t always avoid stalls by forwarding

• If value not computed when needed

• Can’t forward backward in time!

15
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the next instruction

16

lw
   $t1, 0($t0)
lw
   $t2, 4($t0)
add
 $t3, $t1, $t2
sw
   $t3, 12($t0)
lw
   $t4, 8($t0)
add
 $t5, $t1, $t4
sw
   $t5, 16($t0)

MIPS assembly code for 
A = B + E; C = B + F;

stall

stall

lw
  $t1, 0($t0)
lw
  $t2, 4($t0)
lw
  $t4, 8($t0)
add  $t3, $t1, $t2
sw
  $t3, 12($t0)
add
 $t5, $t1, $t4
sw
  $t5, 16($t0)

13 cycles 11 cycles
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Control Hazards

• Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction

• Still working on ID stage of branch

• In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage (See Sec. 4.8)

17
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Stall on Branch

• Wait until branch outcome determined before fetching next instruction

18
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Branch Prediction

• Longer pipelines can’t readily determine branch outcome early

• Stall penalty becomes unacceptable

• Predict outcome of branch

• Only stall if prediction is wrong

• In MIPS pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

19
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MIPS with Predict Not Taken

20

prediction
correct

prediction
incorrect
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More-Realistic Branch Prediction

• Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

• Predict backward branches taken

• Predict forward branches not taken

• Dynamic branch prediction

• Hardware measures actual branch behavior

• e.g., record recent history of each branch

• Assume future behavior will continue the trend

• When wrong, stall while re-fetching, and update history

21
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Pipeline Summary

• Pipelining improves performance by increasing instruction throughput

• Executes multiple instructions in parallel

• Each instruction has the same latency

• Subject to hazards

• Structure, data, control

• Instruction set design affects complexity of pipeline implementation

22



MIPS Pipelined Datapath
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MIPS Pipelined Datapath

24

MEM

WB

Right-to-
left flow 
leads to 
hazards
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Pipeline registers

• Need registers between stages, to hold information produced in previous 
cycle

25
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IF for Load

26
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ID for Load

27
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EX for Load

28
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MEM for Load

29
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WB for Load

30

wrong 
register number!
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Corrected Datapath for Load

31

(A single-cycle pipeline diagram)
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Pipeline Operation

• Cycle-by-cycle flow of instructions through the pipelined datapath

• “Single-clock-cycle” pipeline diagram

• Shows pipeline usage in a single cycle

• Highlight resources used

• c.f. “multi-clock-cycle” diagram

• Graph of operation over time

• We’ll look at “single-clock-cycle” diagrams for load 

32
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Multi-Cycle Pipeline Diagram 1

• Form showing resource usage over time

33
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Multi-Cycle Pipeline Diagram 2

• Traditional form

34
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Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle

35
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Pipelined Control (Simplified)

36
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Pipelined Control Scheme

• Control signals derived from instruction

• As in single-cycle implementation

37



CSEE 3827, Spring 2009 Martha Kim

Pipeline Control Values

• Control signals are conceptually the same as they were in the single cycle 
CPU.

• ALU Control is the same.

• Main control also unchanged.  Table below shows same control signals 
grouped by pipeline stage

38
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Controlled Pipelined CPU

39



CSEE 3827, Spring 2009 Martha Kim

Data Hazards in ALU Instructions

• Consider this instruction sequence:

• We can resolve hazards with forwarding

• How do we detect when to forward?

40

sub $2,$1,$3
and $12,$2,$5
or  $13,$6,$2
add $14,$2,$2
sw  $15,100($2)
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Dependencies & Forwarding

41
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Detecting the Need to Forward

• Pass register numbers along pipeline

• e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline 
register

• ALU operand register numbers in EX stage are given by ID/EX.RegisterRs, 
ID/EX.RegisterRt

• Data hazards when

42

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM

pipeline reg

Fwd from
MEM/WB

pipeline reg
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Detecting the Need to Forward 2

• But only if forwarding instruction will write to a register other than $zero!

• EX/MEM.RegWrite, MEM/WB.RegWrite

• EX/MEM.RegisterRd ≠ 0,
MEM/WB.RegisterRd ≠ 0

43
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Simplified Pipeline w. No Forwarding

44
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Simplified Pipeline w. Forwarding Paths 

45



CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. Forwarding Paths 1

46

keep track of register sources/targets for in-flight instructions
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Simplified Pipeline w. Forwarding Paths 2

47

option of routing previously calculated values directly to ALU
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Simplified Pipeline w. Forwarding Paths 3

48

Operand forwarding (aka register bypass) controlled by forwarding unit
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Forwarding Conditions

• EX hazard

• if      (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
    and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
  ForwardA = 10

• if      (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
  ForwardB = 10

• MEM hazard

• if      (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
    and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
  ForwardA = 01

• if      (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
  ForwardB = 01

49
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Double Data Hazard

• Consider the sequence:

• Both hazards occur

• Want to use the most recent

• Revise MEM hazard condition

• Only fwd if EX hazard condition isn’t true

50

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4
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Revised Forwarding Condition

• MEM hazard

• if   (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
             and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
    and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
  ForwardA = 01

• if  (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
             and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
  ForwardB = 01

51

Condition for 
EX hazard on 
RegisterRs

Condition for 
EX hazard on 

RegisterRt
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Datapath with Forwarding

52
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Load-Use Data Hazard

53

Need to stall for one cycle
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Load-Use Hazard Detection

• Check when using instruction is decoded in ID stage

• ALU operand register numbers in ID stage are given by

• IF/ID.RegisterRs, IF/ID.RegisterRt

• Load-use hazard when

• If detected, stall and insert bubble

54

ID/EX.MemRead 
and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
     or 
     (ID/EX.RegisterRt = IF/ID.RegisterRt))
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How to Stall the Pipeline

• Force control values in ID/EX register
to 0

• Prevent update of PC and IF/ID register

• Using instruction is decoded again

• Following instruction is fetched again

• 1-cycle stall allows MEM to read data for lw

• Can subsequently forward to EX stage

55
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Stall/Bubble in the Pipeline

56

Stall inserted here
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Stall/Bubble in the Pipeline

57

Stall inserted here
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Datapath with Hazard Detection

58
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Stalls and Performance

• Stalls reduce performance

• But are required to get correct results

• Compiler can arrange code to avoid hazards and stalls

• Requires knowledge of the pipeline structure

59
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Branch Hazards

• Determine branch outcome and target as early as possible

• Move hardware to determine outcome to ID stage

• Target address adder

• Register comparator

60
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Branch Taken 1

61
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Branch Taken 2

62
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• If a comparison register is a destination of 2nd or 3rd preceding ALU 
instruction → can resolve using forwarding

Data Hazards for Branches 1

63

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target
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• If a comparison register is a destination of preceding ALU instruction or 2nd 
preceding load instruction → need 1 stall cycle

Data Hazards for Branches 2

64

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target
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Data Hazards for Branches 3

• If a comparison register is a destination of immediately preceding load 
instruction → need 2 stall cycles

65

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target
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Exceptions and Interrupts

• “Unexpected” events requiring change
in flow of control

• Exception

• Arises within the CPU (e.g., undefined opcode, overflow, syscall, …)

• Interrupt

• From an external I/O controller

• Dealing with them without sacrificing performance is hard

66
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Handling Exceptions

• In MIPS, exceptions managed by a System Control Coprocessor (CP0)

• Save PC of offending (or interrupted) instruction

• In MIPS: Exception Program Counter (EPC)

• Save indication of the problem

• In MIPS: Cause register

• We’ll assume 1-bit

• 0 for undefined opcode, 1 for overflow

• Jump to handler at 8000 00180

67
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Handler Actions

• Read cause, and transfer to relevant handler

• Determine action required

• If restartable

• Take corrective action

• use EPC to return to program

• Otherwise

• Terminate program

• Report error using EPC, cause, …

68
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Exceptions in a Pipeline

• Another form of control hazard

• Consider overflow on add in EX stage

• add $1, $2, $1

• Prevent $1 from being clobbered

• Complete previous instructions

• Flush add and subsequent instructions

• Set Cause and EPC register values

• Transfer control to handler

• Similar to mispredicted branch

• Use much of the same hardware

69


