
CSEE 3827: Fundamentals of Computer Systems

Lecture 21 and 22

April 22 and 27, 2009

Martha Kim
martha@cs.columbia.edu

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu

CSEE 3827, Spring 2009 Martha Kim

Amdahl’s Law

2

Be aware when optimizing. . .

T =improved
T

improvement factor
+ T unaffected

Example: On machine A, multiplication accounts for 80s out of 100s total
CPU time.

How much improvement in multiplication performance to get 5x
speedup overall?

Corollary: make the common case fast

affected

CSEE 3827, Spring 2009 Martha Kim

Single-Cycle CPU Performance Issues

• Longest delay determines clock period

• Critical path: load instruction

• instruction memory → register file → ALU → data memory → register file

• Not feasible to vary clock period for different instructions

• We will improve performance by pipelining

3

CSEE 3827, Spring 2009 Martha Kim

Pipelining Laundry Analogy

4

CSEE 3827, Spring 2009 Martha Kim

MIPS Pipeline

• Five stages, one step per stage

• IF: Instruction fetch from memory

• ID: Instruction decode and register read

• EX: Execute operation or calculate address

• MEM: Access memory operand

• WB: Write result back to register

5

CSEE 3827, Spring 2009 Martha Kim

MIPS Pipeline Illustration 1

6

CSEE 3827, Spring 2009 Martha Kim

MIPS Pipeline Illustration 2

7

CSEE 3827, Spring 2009 Martha Kim

Pipeline Performance 1

• Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

• Compare pipelined datapath to single-cycle datapath

8

Instr IF ID EX MEM WB Total (PS)

lw 200 100 200 200 100 800

sw 200 100 200 200 700

R-format 200 100 200 100 600

beq 200 100 200 500

CSEE 3827, Spring 2009 Martha Kim

Pipeline Performance 2

9

Single-cycle Tclock = 800ps

Pipelined Tclock = 200ps

CSEE 3827, Spring 2009 Martha Kim

Pipeline Speedup

• Speedup due to increased throughput.

• If all stages are balanced (i.e., all take the same time)

• If not balanced, speedup is less

10

Pipeline instr. completion rate = Single-cycle instr. completion rate * Number of stages

CSEE 3827, Spring 2009 Martha Kim

Hazard

• A hazard is a situation that prevents starting the next instruction in the next
cycle

• Structure hazards occur when a required resource is busy

• Data hazards occur when an instruction needs to wait for an earlier
instruction to complete its data write

• Control hazards occur when the control action (i.e., next instruction to fetch)
depends on a value that is not yet ready

11

CSEE 3827, Spring 2009 Martha Kim

Structure Hazard

• Conflict for use of a resource

• In a MIPS pipeline with a single memory

• Load/store requires memory access

• Instruction fetch would have to stall for that cycle

• This introduces a pipeline bubble

• Hence, pipelined datapaths require separate instruction and data memories
(or separate instruction and data caches)

12

CSEE 3827, Spring 2009 Martha Kim

Data Hazards

• An instruction depends on completion of data access by a previous
instruction

13

add $s0, $t0, $t1
sub $t2, $s0, $t3

CSEE 3827, Spring 2009 Martha Kim

Forwarding (aka Bypassing)

• Use result when it is computed

• Don’t wait for it to be stored in a register

• Requires extra connections in the datapath

14

CSEE 3827, Spring 2009 Martha Kim

Load-Use Data Hazard

• Can’t always avoid stalls by forwarding

• If value not computed when needed

• Can’t forward backward in time!

15

CSEE 3827, Spring 2009 Martha Kim

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the next instruction

16

lw
 $t1, 0($t0)
lw
 $t2, 4($t0)
add
 $t3, $t1, $t2
sw
 $t3, 12($t0)
lw
 $t4, 8($t0)
add
 $t5, $t1, $t4
sw
 $t5, 16($t0)

MIPS assembly code for
A = B + E; C = B + F;

stall

stall

lw
 $t1, 0($t0)
lw
 $t2, 4($t0)
lw
 $t4, 8($t0)
add $t3, $t1, $t2
sw
 $t3, 12($t0)
add
 $t5, $t1, $t4
sw
 $t5, 16($t0)

13 cycles 11 cycles

CSEE 3827, Spring 2009 Martha Kim

Control Hazards

• Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction

• Still working on ID stage of branch

• In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage (See Sec. 4.8)

17

CSEE 3827, Spring 2009 Martha Kim

Stall on Branch

• Wait until branch outcome determined before fetching next instruction

18

CSEE 3827, Spring 2009 Martha Kim

Branch Prediction

• Longer pipelines can’t readily determine branch outcome early

• Stall penalty becomes unacceptable

• Predict outcome of branch

• Only stall if prediction is wrong

• In MIPS pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

19

CSEE 3827, Spring 2009 Martha Kim

MIPS with Predict Not Taken

20

prediction
correct

prediction
incorrect

CSEE 3827, Spring 2009 Martha Kim

More-Realistic Branch Prediction

• Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

• Predict backward branches taken

• Predict forward branches not taken

• Dynamic branch prediction

• Hardware measures actual branch behavior

• e.g., record recent history of each branch

• Assume future behavior will continue the trend

• When wrong, stall while re-fetching, and update history

21

CSEE 3827, Spring 2009 Martha Kim

Pipeline Summary

• Pipelining improves performance by increasing instruction throughput

• Executes multiple instructions in parallel

• Each instruction has the same latency

• Subject to hazards

• Structure, data, control

• Instruction set design affects complexity of pipeline implementation

22

MIPS Pipelined Datapath

CSEE 3827, Spring 2009 Martha Kim

MIPS Pipelined Datapath

24

MEM

WB

Right-to-
left flow
leads to
hazards

CSEE 3827, Spring 2009 Martha Kim

Pipeline registers

• Need registers between stages, to hold information produced in previous
cycle

25

CSEE 3827, Spring 2009 Martha Kim

IF for Load

26

CSEE 3827, Spring 2009 Martha Kim

ID for Load

27

CSEE 3827, Spring 2009 Martha Kim

EX for Load

28

CSEE 3827, Spring 2009 Martha Kim

MEM for Load

29

CSEE 3827, Spring 2009 Martha Kim

WB for Load

30

wrong
register number!

CSEE 3827, Spring 2009 Martha Kim

Corrected Datapath for Load

31

(A single-cycle pipeline diagram)

CSEE 3827, Spring 2009 Martha Kim

Pipeline Operation

• Cycle-by-cycle flow of instructions through the pipelined datapath

• “Single-clock-cycle” pipeline diagram

• Shows pipeline usage in a single cycle

• Highlight resources used

• c.f. “multi-clock-cycle” diagram

• Graph of operation over time

• We’ll look at “single-clock-cycle” diagrams for load

32

CSEE 3827, Spring 2009 Martha Kim

Multi-Cycle Pipeline Diagram 1

• Form showing resource usage over time

33

CSEE 3827, Spring 2009 Martha Kim

Multi-Cycle Pipeline Diagram 2

• Traditional form

34

CSEE 3827, Spring 2009 Martha Kim

Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle

35

CSEE 3827, Spring 2009 Martha Kim

Pipelined Control (Simplified)

36

CSEE 3827, Spring 2009 Martha Kim

Pipelined Control Scheme

• Control signals derived from instruction

• As in single-cycle implementation

37

CSEE 3827, Spring 2009 Martha Kim

Pipeline Control Values

• Control signals are conceptually the same as they were in the single cycle
CPU.

• ALU Control is the same.

• Main control also unchanged. Table below shows same control signals
grouped by pipeline stage

38

CSEE 3827, Spring 2009 Martha Kim

Controlled Pipelined CPU

39

CSEE 3827, Spring 2009 Martha Kim

Data Hazards in ALU Instructions

• Consider this instruction sequence:

• We can resolve hazards with forwarding

• How do we detect when to forward?

40

sub $2,$1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

CSEE 3827, Spring 2009 Martha Kim

Dependencies & Forwarding

41

CSEE 3827, Spring 2009 Martha Kim

Detecting the Need to Forward

• Pass register numbers along pipeline

• e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline
register

• ALU operand register numbers in EX stage are given by ID/EX.RegisterRs,
ID/EX.RegisterRt

• Data hazards when

42

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM

pipeline reg

Fwd from
MEM/WB

pipeline reg

CSEE 3827, Spring 2009 Martha Kim

Detecting the Need to Forward 2

• But only if forwarding instruction will write to a register other than $zero!

• EX/MEM.RegWrite, MEM/WB.RegWrite

• EX/MEM.RegisterRd ≠ 0,
MEM/WB.RegisterRd ≠ 0

43

CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. No Forwarding

44

CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. Forwarding Paths

45

CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. Forwarding Paths 1

46

keep track of register sources/targets for in-flight instructions

CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. Forwarding Paths 2

47

option of routing previously calculated values directly to ALU

CSEE 3827, Spring 2009 Martha Kim

Simplified Pipeline w. Forwarding Paths 3

48

Operand forwarding (aka register bypass) controlled by forwarding unit

CSEE 3827, Spring 2009 Martha Kim

Forwarding Conditions

• EX hazard

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

• MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

49

CSEE 3827, Spring 2009 Martha Kim

Double Data Hazard

• Consider the sequence:

• Both hazards occur

• Want to use the most recent

• Revise MEM hazard condition

• Only fwd if EX hazard condition isn’t true

50

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

CSEE 3827, Spring 2009 Martha Kim

Revised Forwarding Condition

• MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

51

Condition for
EX hazard on
RegisterRs

Condition for
EX hazard on

RegisterRt

CSEE 3827, Spring 2009 Martha Kim

Datapath with Forwarding

52

CSEE 3827, Spring 2009 Martha Kim

Load-Use Data Hazard

53

Need to stall for one cycle

CSEE 3827, Spring 2009 Martha Kim

Load-Use Hazard Detection

• Check when using instruction is decoded in ID stage

• ALU operand register numbers in ID stage are given by

• IF/ID.RegisterRs, IF/ID.RegisterRt

• Load-use hazard when

• If detected, stall and insert bubble

54

ID/EX.MemRead
and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
 or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

CSEE 3827, Spring 2009 Martha Kim

How to Stall the Pipeline

• Force control values in ID/EX register
to 0

• Prevent update of PC and IF/ID register

• Using instruction is decoded again

• Following instruction is fetched again

• 1-cycle stall allows MEM to read data for lw

• Can subsequently forward to EX stage

55

CSEE 3827, Spring 2009 Martha Kim

Stall/Bubble in the Pipeline

56

Stall inserted here

CSEE 3827, Spring 2009 Martha Kim

Stall/Bubble in the Pipeline

57

Stall inserted here

CSEE 3827, Spring 2009 Martha Kim

Datapath with Hazard Detection

58

CSEE 3827, Spring 2009 Martha Kim

Stalls and Performance

• Stalls reduce performance

• But are required to get correct results

• Compiler can arrange code to avoid hazards and stalls

• Requires knowledge of the pipeline structure

59

CSEE 3827, Spring 2009 Martha Kim

Branch Hazards

• Determine branch outcome and target as early as possible

• Move hardware to determine outcome to ID stage

• Target address adder

• Register comparator

60

CSEE 3827, Spring 2009 Martha Kim

Branch Taken 1

61

CSEE 3827, Spring 2009 Martha Kim

Branch Taken 2

62

CSEE 3827, Spring 2009 Martha Kim

• If a comparison register is a destination of 2nd or 3rd preceding ALU
instruction → can resolve using forwarding

Data Hazards for Branches 1

63

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

CSEE 3827, Spring 2009 Martha Kim

• If a comparison register is a destination of preceding ALU instruction or 2nd
preceding load instruction → need 1 stall cycle

Data Hazards for Branches 2

64

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

CSEE 3827, Spring 2009 Martha Kim

Data Hazards for Branches 3

• If a comparison register is a destination of immediately preceding load
instruction → need 2 stall cycles

65

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

CSEE 3827, Spring 2009 Martha Kim

Exceptions and Interrupts

• “Unexpected” events requiring change
in flow of control

• Exception

• Arises within the CPU (e.g., undefined opcode, overflow, syscall, …)

• Interrupt

• From an external I/O controller

• Dealing with them without sacrificing performance is hard

66

CSEE 3827, Spring 2009 Martha Kim

Handling Exceptions

• In MIPS, exceptions managed by a System Control Coprocessor (CP0)

• Save PC of offending (or interrupted) instruction

• In MIPS: Exception Program Counter (EPC)

• Save indication of the problem

• In MIPS: Cause register

• We’ll assume 1-bit

• 0 for undefined opcode, 1 for overflow

• Jump to handler at 8000 00180

67

CSEE 3827, Spring 2009 Martha Kim

Handler Actions

• Read cause, and transfer to relevant handler

• Determine action required

• If restartable

• Take corrective action

• use EPC to return to program

• Otherwise

• Terminate program

• Report error using EPC, cause, …

68

CSEE 3827, Spring 2009 Martha Kim

Exceptions in a Pipeline

• Another form of control hazard

• Consider overflow on add in EX stage

• add $1, $2, $1

• Prevent $1 from being clobbered

• Complete previous instructions

• Flush add and subsequent instructions

• Set Cause and EPC register values

• Transfer control to handler

• Similar to mispredicted branch

• Use much of the same hardware

69

