CSEE 3827: Fundamentals of Computer Systems

Lecture 12

March 2, 2009

Martha Kim martha@cs.columbia.edu

Moore machine

a circuit in which the output depends only on the current state

a circuit in which the outputs depend on the inputs as well as the current state

FSM timing characteristics

Flip-flop timing requirements

- Flip-flops sample their inputs at each rising or falling clock edge
- The input data must be held stable for some time before and after the sample

A Mealy or Moore circuit?

M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

An example Moore circuit

5-16

Present state	Inputs		Next state	Output
А	Х	Y	А	Ζ
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) State table

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

In class exercise

• Design a Mealy machine to identify when the sequence "3827" has occurred in a serial numerical input.

• Now design a Moore machine to do the same thing.

In class exercise: design a vending machine

- This vending machine will dispense a soda after the user has entered \$.15
- Inputs: N, D (nickel, dime, quarter inserted)
- Output: R (release soda)

Unused states: extra state encodings (e.g., using 3 FFs to represent 6 states leaves 2 unused states) can be treated as "don't care" values and used to simplify the combinational logic

This reduces combinational logic, which means a faster clock.

State minimization: two states are equivalent if they transition to the same or equivalent states on the same inputs while producing the same outputs

This can reduce the number of flip-flops.