
Fundamentals of Computer Systems
Thinking Digitally

Martha A. Kim

Columbia University

Fall 2015

1 / 28



Computer Systems Work Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

2 / 28



Computer Systems Work Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827

Digital Circuits First Half of 3827

Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.

2 / 28



Simple information processing system

Discrete Information
Processing System

System State

Discrete
Inputs

Discrete
Outputs

First half of the course

3 / 28



Simple information processing system

Discrete Information
Processing System

System State

Discrete
Inputs

Discrete
Outputs

First quarter of the course

3 / 28



Administrative Items

http://www.cs.columbia.edu/~martha/courses/3827/au15/

https://piazza.com/class/idq5hhzggizmq

Prof. Martha A. Kim
martha@cs.columbia.edu
469 Computer Science Building

Lectures 10:10–11:25 AM Tue, Thur
501 Schermerhorn Hall
Sep 8–Dec 10
Holidays: Nov 3 (Election Day), Nov 26 (Thanksgiving)

4 / 28

http://www.cs.columbia.edu/~martha/courses/3827/au15/
https://piazza.com/class/idq5hhzggizmq


Office Hours

The six (and counting) TAs and I will all offer office
hours.

Always consult the course calendar (linked from course
webpage) for the latest schedule.

https://www.google.com/calendar/embed?src=8g48vdedcbb85k7jn4orpu48mg%40group.calendar.google.com

5 / 28

https://www.google.com/calendar/embed?src=8g48vdedcbb85k7jn4orpu48mg%40group.calendar.google.com


Assignments and Grading

Weight What When

40% Six homeworks See Webpage
30% Midterm exam #1 October TBA
30% Midterm exam #2 December TBA

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores;
you can one assignment with no penalty.

There will be no extensions.

6 / 28



Rules and Regulations

You may consult and collaborate with classmates on
homework, but you must turn in your own work.

List your collaborators on your homework.

Use your judgement about outside resources. E.g.,
Reading wikipedia is fine, but asking stackoverflow.com
to help debug your assembly code is not. In unclear
situations, ask.

Do not cheat.

Tests will be closed-book with a one-page “note sheet”
of your own devising.

7 / 28



The Text(s): Alternative #1

No required text. There are two recommended
alternatives.

É David Harris and Sarah Harris. Digital Design and
Computer Architecture.

Almost precisely right for the scope of this class:
digital logic and computer architecture.

8 / 28



The Text(s): Alternative #2

É M. Morris Mano and
Charles Kime. Logic
and Computer Design
Fundamentals, 4th ed.

É Computer Organization
and Design, The
Hardware/Software
Interface, 4th ed. David
A. Patterson and John L.
Hennessy

9 / 28



th
in

kg
ee

k.
co

m
10 / 28



The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

7× 102 + 3× 101 + 0× 100 = 73010

9× 102 + 9× 101 + 0× 100 = 99010

Why base ten?

11 / 28



Which Numbering System Should We Use?
Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

12 / 28



Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin

0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111

13 / 28



Binary and Octal

D
E
C

PD
P-

8
/I
,
c.

1
9

6
8

Oct Bin

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

PC = 0× 211 + 1× 210 + 0× 29 + 1× 28 + 1× 27 + 0× 26 +

1× 25 + 1× 24 + 1× 23 + 1× 22 + 0× 21 + 1× 20

= 2× 83 + 6× 82 + 7× 81 + 5× 80

= 146910
14 / 28



Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D16 = 12× 167 + 10× 166 + 15× 165 + 14× 164 +

15× 163 + 0× 162 + 0× 161 + 13× 160

= 3,405,705,22910

C A F E F 0 0 D Hex
11001010111111101111000000001101 Binary
3 1 2 7 7 5 7 0 0 1 5 Octal

15 / 28



Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5

binary
octal
decimal
hexadecimal

digits?

16 / 28



Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the pro-
cessor, e.g., 16, 32, 64

LSB Least Significant Bit (“rightmost”)

MSB Most Significant Bit (“leftmost”)

17 / 28



Decimal Addition Algorithm

1 1

434
+628

1062

4+ 8 = 12

1+ 3+ 2 = 6
4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

18 / 28



Decimal Addition Algorithm

1

1
434

+628

106

2

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

18 / 28



Decimal Addition Algorithm

1

1
434

+628

10

62

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

18 / 28



Decimal Addition Algorithm

1 1
434

+628

1

062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

18 / 28



Decimal Addition Algorithm

1 1
434

+628
1062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

18 / 28



Binary Addition Algorithm

10011

10011
+11001

101100

1+ 1 = 10

1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Binary Addition Algorithm

1001

1
10011

+11001

10110

0

1+ 1 = 10
1+ 1+ 0 = 10

1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Binary Addition Algorithm

100

11
10011

+11001

1011

00

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01

0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Binary Addition Algorithm

10

011
10011

+11001

101

100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01

0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Binary Addition Algorithm

1

0011
10011

+11001

10

1100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Binary Addition Algorithm

10011
10011

+11001
101100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

19 / 28



Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be
represented?

20 / 28



Signed Magnitude Numbers

You are most familiar with this:
negative numbers have a leading −

In binary, a
leading 1 means
negative:

00002 = 0

00102 = 2

10102 = −2

11112 = −7

10002 = −0?

Can be made to work, but addition is
annoying:

If the signs match, add the magnitudes
and use the same sign.

If the signs differ, subtract the smaller
number from the larger; return the
sign of the larger.

21 / 28



One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number.

To negate a number, complement (flip) each bit.

00002 = 0

00102 = 2

11012 = −2

10002 = −7

11112 = −0?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a −0: two
numbers are equal if their bits are the
same or if one is 0 and the other is −0.

22 / 28



23 / 28



Two’s Complement Numbers
Really neat trick: make the most
significant bit represent a negative
number instead of positive:

11012 = −8+ 4+ 1 = −3

11112 = −8+ 4+ 2+ 1 = −1

01112 = 4+ 2+ 1 = 7

10002 = −8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s
complement) then add 1.

Very good property: no −0

Two’s complement numbers are equal if all their bits
are the same.

24 / 28



Number Representations Compared

Bits Binary Signed One’s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1

...
0111 7 7 7 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7

...
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Smallest number
Largest number

25 / 28



Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3× 101 + 1× 100 +

4× 10−1 + 1× 10−2 + 5× 10−3 + 9× 10−4

The same trick works in binary:

1011.01102 = 1× 23 + 0× 22 + 1× 21 + 1× 20 +

0× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4

= 8+ 2+ 1+ 0.25+ 0.125
= 11.375

26 / 28



Need a bigger range? Try Floating Point
Representation.

Floating point can represent very large numbers in a
compact way.

A lot like scientific notation, −7.776× 103, where you
have the mantissa (−7.776) and exponent (3).

But for this course, think in binary: −1.10x20111

The bits of a 32-bit word are separated into fields. The
IEEE 754 standard specifies

É which bits represent which fields (bit 31 is sign, bits
30-23 are 8-bit exponent, bits 22-00 are 23-bit
fraction)

É how to interpret each field
27 / 28



Characters and Strings? ASCII.

28 / 28


