Fundamentals of Computer Systems Thinking Digitally

Martha A. Kim

Columbia University

Fall 2015

Computer Systems Work Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

Computer Systems Work Because of Abstraction

Application Software COMS 3157, 4156, et al. **Operating Systems** COMS W4118 Architecture Second Half of 3827 Micro-Architecture Second Half of 3827 First Half of 3827 Logic **Digital Circuits** First Half of 3827 Analog Circuits ELEN 3331 Devices ELEN 3106 Physics ELEN 3106 et al.

Simple information processing system

First half of the course

Simple information processing system

Administrative Items

http://www.cs.columbia.edu/~martha/courses/3827/au15/

https://piazza.com/class/idq5hhzggizmq

Prof. Martha A. Kim martha@cs.columbia.edu 469 Computer Science Building

Lectures 10:10–11:25 AM Tue, Thur 501 Schermerhorn Hall Sep 8–Dec 10 Holidays: Nov 3 (Election Day), Nov 26 (Thanksgiving) The six (and counting) TAs and I will all offer office hours.

Always consult the course calendar (linked from course webpage) for the latest schedule.

https://www.google.com/calendar/embed?src=8g48vdedcbb85k7jn4or

Assignments and Grading

Weight	What	When
40%	Six homeworks	See Webpage
30%	Midterm exam #1	October TBA
30%	Midterm exam #2	December TBA

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores; you can ______ one assignment with no penalty.

There will be no extensions.

Rules and Regulations

You may consult and collaborate with classmates on homework, but *you must turn in your own work*.

List your collaborators on your homework.

Use your judgement about outside resources. E.g., Reading wikipedia is fine, but asking stackoverflow.com to help debug your assembly code is not. In unclear situations, ask.

Do not cheat.

Tests will be closed-book with a one-page "note sheet" of your own devising.

The Text(s): Alternative #1

No required text. There are two recommended alternatives.

 David Harris and Sarah Harris. Digital Design and Computer Architecture.

Almost precisely right for the scope of this class: digital logic and computer architecture.

The Text(s): Alternative #2

 M. Morris Mano and Charles Kime. Logic and Computer Design Fundamentals, 4th ed.

 Computer Organization and Design, The Hardware/Software Interface, 4th ed. David A. Patterson and John L. Hennessy

There are only 10 types of people in the world: Those who understand binary and those who don't.

thinkgeek.com

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

$$7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0 = 730_{10}$$

$$9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0 = 990_{10}$$

Why base ten?

Which Numbering System Should We Use? Some Older Choices:

one	•• two	five	six	nine
~	<u></u>		=	ė
ten	thirteen	fifteen	nineteen	twenty
e twenty-one	twenty-three	twenty-five	forty	one hundred

Mayan: base 20, Shell = 0

1 Y	11 ∢ Y	21 ≪ Y	31 ₩K Y	41 - 🛠 T	51 🍂 T
2 TY	12 < ĭ ĭ	22 🛠 🕅	32 ₩ 1	42 4 2 11	52 🔏 🕅
3 777	13 ≺ ???	23 ≪ TTT	33 🗮 TTT	43 4 M	S ATT
4 🍄	∺∢👺	24 ≪♥	™ ₩₩	44 X Y	2,00
5 997	15 ⊀₩	∞≪???	35 ₩₩	- € ₩	54-Q4 T
					∞- 4¥ 11
- 111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 4 4(1))	50	-∿	∞- \$ ¢∰
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17 4 44	27 🔍 👾	· ••••	47 - <b>2 4 4</b>	57.4₹₩
° 📅		20≪₩	30 ≪≪ ₩	48 -4≪ 📅	. A .
∘ ₩	⊪ ∢∰	29≪₩	™ ₩₩	∞⊀∰	≫ <del> C</del> π
10 🖌	20 ≪	30 🗮	* <b>\$</b>	50 🍂	∞-�₩

Babylonian: base 60

#### Hexadecimal, Decimal, Octal, and Binary

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
А	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Е	14	16	1110
F	15	17	1111

#### **Binary and Octal**



 $\begin{array}{rcl} \mathsf{PC} & = & 0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + \\ & 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \end{array}$ 

 $= 2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$ 

 $= 1469_{10}$ 

#### **Hexadecimal Numbers**

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F Instead of groups of 3 bits (octal), Hex uses groups of 4.

 $\begin{array}{rcl} \mathsf{CAFEF00D_{16}} &=& 12\times16^7+10\times16^6+15\times16^5+14\times16^4+\\ && 15\times16^3+0\times16^2+0\times16^1+13\times16^0\\ &=& 3,405,705,229_{10} \end{array}$ 

 C
 A
 F
 E
 F
 0
 0
 D
 Hex

 11001010111111011110000000001101
 Binary

 3
 1
 2
 7
 7
 5
 7
 0
 0
 1
 5
 Octal

**Computers Rarely Manipulate True Numbers** 

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you binary represent with 5 decimal hexadecimal

#### Jargon



Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
<b>⊥628</b>	1	1	2	3	4	5	6	7	8	9	10
1020	2	2	3	4	5	6	7	8	9	10	11
	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
2	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 0	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	- 4	5	6	- 7	8	9	10	11
62	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 - 10	10	10	11	12	13	14	15	16	17	18	19

$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	+	0	1	2	3	4	5	6	7	8	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434	0	0	1	2	3	4	5	6	7	8	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>⊥628</b>	1	1	2	3	4	5	6	7	8	9	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1020	2	2	3	4	5	6	7	8	9	10	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	062	3	3	4	5	6	7	8	9	10	11	12
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		4	4	5	6	7	8	9	10	11	12	13
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		5	5	6	7	8	9	10	11	12	13	14
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		6	6	7	8	9	10	11	12	13	14	15
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 2 6	8	8	9	10	11	12	13	14	15	16	17
4 + 6 - 10 10 10 11 12 13 14 15 16 17 18 19	1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
	4 + 6 - 10	10	10	11	12	13	14	15	16	17	18	19

1

1 1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
<b>⊥628</b>	1	1	2	3	4	5	6	7	8	9	10
1020	2	2	3	4	5	6	7	8	9	10	11
1062	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
+3+2 = 6	9	9	10	11	12	13	14	15	16	17	18
$4 \pm 6 - 10$	10	10	11	12	13	14	15	16	17	18	19





11 10011 +11001 00		
	+	0 1
1 + 1 = 10	0	00 01
1 1 0 10	1	<mark>01</mark> 10
1 + 1 + 0 = 10	10	10 11
1 + 0 + 0 = 01		

	+	0 1
1 + 1 = 10	0	00 01
1 + 1 + 0 = 10	10	10 11
1 + 0 + 0 = 01		
0 + 0 + 1 - 01		

1+1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01
0 + 1 + 1	=	10

+	0 1
0	00 01
1	01 10
10	<mark>10</mark> 11

1+1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01
0 + 1 + 1	=	10

+	0 1
0	00 01
1	01 10
10	10 11

## Signed Numbers: Dealing with Negativity

John Hancock

How should both positive and negative numbers be represented?

#### Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading —

In binary, a leading 1 means negative:

 $0000_2 = 0$ 

 $0010_2 = 2$ 

 $1010_2 = -2$ 

 $1111_2 = -7$ 

 $1000_2 = -0?$ 

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.

#### **One's Complement Numbers**

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number.

To negate a number, complement (flip) each bit.

- $0000_2 = 0$ Addition is nicer: just add the one's<br/>complement numbers as if they were<br/>normal binary. $1101_2 = -2$ Really, approving baying a 0; two
  - $1000_2 = -7$
  - $1111_2 = -0?$

Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0.



23/28

#### Two's Complement Numbers



Really neat trick: make the most significant bit represent a *negative* number instead of positive:

 $1101_2 = -8 + 4 + 1 = -3$ 

$$1111_2 = -8 + 4 + 2 + 1 = -1$$

$$0111_2 = 4 + 2 + 1 = 7$$

 $1000_2 = -8$ 

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one's complement) then add 1.

Very good property: no -0

Two's complement numbers are equal if all their bits are the same.

#### Number Representations Compared

Bits	Binary	Signed Mag.	One's Comp.	Two's Comp.
0000	0	0	0	0
0001	1	1	1	1
÷				
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
÷				
1110	14	—6	-1	-2
1111	15	-7	-0	-1

Smallest number Largest number

## **Fixed-point Numbers**



How to represent fractional numbers? In decimal, we continue with negative powers of 10:

$$\begin{array}{rll} \textbf{31.4159} &=& \textbf{3} \times 10^1 + \textbf{1} \times 10^0 + \\ && \textbf{4} \times 10^{-1} + \textbf{1} \times 10^{-2} + \textbf{5} \times 10^{-3} + \textbf{9} \times 10^{-4} \end{array}$$

The same trick works in binary:

$$1011.0110_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} = 8 + 2 + 1 + 0.25 + 0.125 = 11.375$$

Need a bigger range? Try Floating Point Representation.

Floating point can represent very large numbers in a compact way.

A lot like scientific notation,  $-7.776 \times 10^3$ , where you have the *mantissa* (-7.776) and *exponent* (3).

But for this course, think in binary:  $-1.10x2^{0111}$ 

The bits of a 32-bit word are separated into fields. The IEEE 754 standard specifies

- which bits represent which fields (bit 31 is sign, bits 30-23 are 8-bit exponent, bits 22-00 are 23-bit fraction)
- how to interpret each field

#### Characters and Strings? ASCII.

#### The ASCII code

#### American Standard Code for Information Interchange

#### www.theasciicode.com.ar

A	SCII	contro	l characters	ASCII printable characters									Extended ASCII characters											
DEC	нех	Si	mbolo ASCII	DEC	нех	Simbolo	DEC	HEX	Simbolo	DEC	нех	Simbolo	DEC	нех	Simbolo	DEC	нех	Simbolo	DEC	HEX	Simbolo	DEC	нех	Simbolo
00	00h	NULL	(carácter nulo)	32	20h	espacio	64	40h	0	96	60h		128	80h	С	160	A0h	á	192	C0h	L	224	E0h	Ó
01		SOH	(inicio encabezado)	33		1	65	41h	Ă	97		а	129	81h	ú	161		1	193		±	225		6
02	02h	STX	(inicio texto)	34	22h		66	42h	B	98	62h	b	130	82h	é	162	A2h	ó	194	C2h	-	226	E2h	Ó
03	03h	ETX	(fin de texto)	35	23h	#	67	43h	С	99	63h	с	131		â	163	A3h	ú	195	C3h	-	227	E3h	Ò
04	04h	EOT	(fin transmisión)	36	24h	\$	68	44h	D	100	64h	d	132	84h	ă	164	A4h	ñ	196	C4h	÷	228	E4h	õ
05	05h	ENQ	(enquiry)	37	25h	%	69	45h	E	101	65h	e	133	85h	à	165	A5h	Ň	197	C5h	+	229	E5h	Ô
06		ACK	(acknowledgement)	38		8	70	46h	F	102		f	134	86h	á	166			198		ä	230		μ
07		BEL	(timbre)	39			71	47h	G	103	67h	g	135	87h	ç	167	A7h	۰	199		Ä	231		þ
08		BS	(retroceso)	40		(	72	48h	н	104		ĥ	136	88h	ê	168		2	200		Ŀ	232		Þ
09	09h	HT	(tab horizontal)	41		j	73	49h	1	105	69h	1.1	137		ĕ	169	A9h	ē	201	C9h	F	233	E9h	Ú
10	0Ah	LF	(salto de línea)	42	2Ah	*	74	4Ah	J	106	6Ah	i	138	8Ah	è	170	AAh		202	CAh	1	234	EAh	Û
11		VT	(tab vertical)	43		+	75	4Bh	K	107		k	139	8Bh	ï	171		1/2	203		T	235		Ú
12		FF	(form feed)	44			76	4Ch	L	108			140	8Ch	î î	172	ACh	- 14	204		Ł	236		Ý
13		CR	(retorno de carro)	45		-	77	4Dh	M	109		m	141		1	173		1	205		=	237		Ý
14		SO	(shift Out)	46			78	4Eh	N	110		n	142	8Eh	Ä	174		×.	206		+	238		-
15		SI	(shift In)	47		1	79	4Fh	0	111		0	143	8Fh	A	175		*	207			239		
16		DLE	(data link escape)	48		0	80		P	112		р	144	90h	E	176		888	208	DOh	ð	240	FOh	
17		DC1	(device control 1)	49		1	81		Q	113		q	145	91h	æ	177		385	209		Ð	241		±
18		DC2	(device control 2)	50		2	82		R	114		r	146	92h	Æ	178			210		E	242		_
19		DC3	(device control 3)	51		3	83		S	115		s	147	93h	ó	179			211		Ę	243		2/4
20	14h	DC4	(device control 4)	52	34h	4	84	54h	т	116	74h	t	148	94h	ò	180	B4h		212	D4h	E	244	F4h	1
21		NAK	(negative acknowle.)	53		5	85		U	117		u	149	95h	ò	181		A	213		1.1	245		ş
22		SYN	(synchronous idle)	54		6	86		v	118		v	150	96h	ú	182		Ą	214		1	246		÷
23		ETB	(end of trans. block)	55		7	87		w	119		w	151		ú	183		A	215		1	247		
24		CAN	(cancel)	56		8	88		х	120		x	152	98h	ÿ	184		©	216			248		۰
25		EM	(end of medium)	57		9	89		Y	121		У	153	99h	o	185		- 1	217		-	249		
26		SUB	(substitute)	58			90		z	122		z	154	9Ah	U	186			218		1	250		
27		ESC	(escape)	59		;	91		1	123		(	155	9Bh	ø	187		1	219			251		1
28		FS	(file separator)	60		<	92		N I	124			156	9Ch	£	188		4	220			252		1
29		GS	(group separator)	61		-	93		1	125		}	157		ø	189		¢	221			253		2
30		RS	(record separator)	62		>	94		^	126		~	158	9Eh	×	190		¥	222		<u> </u>	254		
31		US	(unit separator)	63		?	95		-	theA	Clico	de com ar	159	9Fh	f	191		- 1	223			255		
127		DEL	(delete)							uleA	sciiu	de.com.ar												