CSEE W3827

Fundamentals of Computer Systems
 Homework Assignment 2

Prof. Martha A. Kim
Columbia University
Due October 6, 2015 at 10:10 AM

Write your name and UNI on your solutions
Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1. (10 points) Show how to implement the 7-segment decoder shown in class using a 4:16 decoder and OR gates (of any size) [UPDATE: You may use inverters if you wish, but it is not mandatory.]
2. (15 points) Show how to implement $F=\bar{A} B+B D+\bar{A} \bar{B} \bar{D}+\bar{B} C \bar{D}$ using a 4:1 mux whose select bits are A (most significant) and B.
3. (15 points) Design a circuit that takes a 4-bit number and increments it by one. It should operate cyclically, so when the input is 15 , the output should be 0 .
4. (20 points) Give a schematic that compares three 8 -bit values A, B, and C. Your circuit should output 1 if $A>B>C, 0$ otherwise. [UPDATE: Assume the 8 -bit values are 2's complement. You may also assume that the values on A, B, and C will not cause overflow (i.e., no need for your implementation to handle overflow cases).]
5. (20 points) Design a histogram circuit that accepts eight 2-bit values and produces 4 4-bit values indicating how many times each of the four possible input values ($00,01,10$ and 11) appeared on the eight inputs. Provide a schematic for your design.
6. (20 points) Using full adders, design a circuit that accepts a seven-bit input and outputs the number of input bits that are 1 as a 3-bit binary number.
